

Lecture Notes in Computer Science 5058
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Alexander A. Shvartsman Pascal Felber (Eds.)

Structural Information
and Communication
Complexity

15th International Colloquium, SIROCCO 2008
Villars-sur-Ollon, Switzerland, June 17-20, 2008
Proceedings

13

Volume Editors

Alexander A. Shvartsman
University of Connecticut
Department of Computer Science and Engineering
Storrs, CT 06269, USA
E-mail: aas@cse.uconn.edu

Pascal Felber
Université de Neuchâtel
Institut d’informatique
Rue Emile-Argand 11
2009 Neuchâtel
E-mail: pascal.felber@unine.ch

Library of Congress Control Number: 2008928716

CR Subject Classification (1998): F.2, C.2, G.2, E.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-69326-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69326-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12321964 06/3180 5 4 3 2 1 0

Preface

The Colloquium on Structure, Information, Communication, and Complexity
(SIROCCO) is an annual research meeting focused on the relationship between
information and efficiency in decentralized (distributed, parallel, and network)
computing. This year, SIROCCO celebrated its 15th anniversary. Over the years,
the colloquium has become a widely recognized forum bringing together re-
searchers interested in the fundamental principles underlying the interplay be-
tween local structural knowledge and global communication and computation
complexity. SIROCCO covers topics such as distributed algorithms, compact
data structures, information dissemination, informative labeling schemes, com-
binatorial optimization, and others, with potential applications to large-scale
distributed systems including global computing platforms, peer-to-peer systems
and applications, social networks, wireless networks, and network protocols (such
as routing, broadcasting, localization). SIROCCO 2008 was held in Villars-sur-
Ollon, in the Swiss Alps, June 17–20, 2008.

There were 52 contributions submitted to SIROCCO 2008. All papers un-
derwent a thorough refereeing process, where each submission was reviewed by
at least 3, and on average 3.4, Program Committee members. After in-depth
discussions, the Program Committee selected 22 high-quality contributions for
presentation at the colloquium and publication in this volume. We thank the
authors of all the submitted papers, the Program Committee members, and
the external reviewers. Without their dedication, we could not have prepared a
program of such quality.

There were two invited speakers at SIROCCO 2008: Nicola Santoro (Carleton
University) and Boaz Patt-Shamir (Tel-Aviv University).

We express our gratitude to the SIROCCO Steering Committee, and in par-
ticular to Pierre Fraigniaud for his enthusiasm and his invaluable help throughout
the preparation of this event.

We are also grateful to all the local people who were instrumental in mak-
ing SIROCCO 2008 a success, notably Peter Kropf, the many students who
volunteered on the organization team, and the IT service of the University of
Neuchatel.

We acknowledge the use of the EasyChair system for handling the submission
of papers, managing the refereeing process, and generating these proceedings.

June 2008 Alexander Shvartsman
Pascal Felber

Conference Organization

Steering Committee

Paola Flocchini University of Ottawa, Canada
Pierre Fraigniaud (Chair) CNRS and University Paris 7, France
Leszek Gasieniec University of Liverpool, UK
Leszek Kirousis Lefteris University of Patras, Greece
Rastislav Kralovic Comenius University, Slovakia
Evangelos Kranakis Carleton University, Canada
Danny Krizanc Wesleyan University, USA
Bernard Mans Macquarie University, Australia
Andrzej Pelc Université du Québec en Outaouais, Canada
David Peleg Weizmann Institute, Israel
Giuseppe Prencipe Pisa University, Italy
Michel Raynal IRISA, University of Rennes, France
Nicola Santoro Carleton University, Canada
Pavlos Spirakis CTI, Greece
Shmuel Zaks Technion, Israel

Program Committee

Amotz Bar-Noy City University of New York, USA
Costas Busch Louisiana State University, USA
Bogdan Chlebus University of Colorado Denver, USA
Andrea Clementi University “Tor Vergata” of Rome, Italy
Roberto De Prisco University of Salerno, Italy
Stefan Dobrev Slovak Academy of Sciences, Slovakia
Michael Elkin Ben-Gurion University, Israel
Pascal Felber University of Neuchatel, Switzerland
Eli Gafni UCLA, USA
Goran Konjevod Arizona State University, USA
Dariusz Kowalski University of Liverpool, UK
Adrian Kosowski Gdansk University of Technology, Poland
Shay Kutten Technion, Israel
Dahlia Malkhi Microsoft Research, USA
Marios Mavronicolas University of Cyprus, Cyprus
Achour Mostefaoui University of Rennes, France
Alex Shvartsman (Chair) University of Connecticut, USA
Sebastien Tixeuil Pierre and Marie Curie University, France
Masafumi Yamashita Kyushu University, Japan

VIII Organization

Local Organization

Pascal Felber (Chair) University of Neuchatel, Switzerland
Peter Kropf University of Neuchatel, Switzerland

Sponsoring Institutions

University of Neuchatel

External Reviewers

Mohamed Ahmed
Chen Avin
Leonid Barenboim
Janna Burman
Andrea Clementi
Richard Cole
Jurek Czyzowicz
Shantanu Das
Seda Davtyan
Dariusz Dereniowski
Stéphane Devismes
Yoann Dieudonné
Yefim Dinitz
Pierre Fraigniaud
Cyril Gavoille
Chryssis Georgiou
Maria Gradinariu Potop-Butucaru
Ted Herman
David Ilcinkas
Erez Kantor
Haim Kaplan
Sotiris Kentros
Ralf Klasing
Alex Kravchik
Peter Kropf
Piotr Krysta
Lukasz Kuszner

Zvi Lotker
Adam Malinowski
Fredrik Manne
Sumit Narayan
Alfredo Navarra
Yen Kaow Ng
Nicolas Nicolaou
Hirotaka Ono
Christos Papadimitriou
Katy Paroux
Francesco Pasquale
Paolo Penna
Andrzej Pelc
Andrea Pietracaprina
Adele Rescigno
Adi Rosen
Gianluca Rossi
Etienne Rivière
Tim Roughgarden
Nicola Santoro
Riccardo Silvestri
Nir Tzachar
Ugo Vaccaro
Carmine Ventre
Ivan Visconti
Qin Xin
Pawel Zylinski

Table of Contents

Invited Talks

Mobile Entities Computing: Models and Problems 1
Nicola Santoro

Reputation, Trust and Recommendation Systems in Peer-to-Peer
Systems . 2

Boaz Patt-Shamir

Regular Papers

Gathering Problem of Two Asynchronous Mobile Robots with
Semi-dynamic Compasses . 5

Nobuhiro Inuzuka, Yuichi Tomida, Taisuke Izumi,
Yoshiaki Katayama, and Koichi Wada

Locating and Repairing Faults in a Network with Mobile Agents 20
Colin Cooper, Ralf Klasing, and Tomasz Radzik

Remembering without Memory: Tree Exploration by Asynchronous
Oblivious Robots . 33

Paola Flocchini, David Ilcinkas, Andrzej Pelc, and Nicola Santoro

Average Binary Long-Lived Consensus: Quantifying the Stabilizing
Role Played by Memory . 48

Florent Becker, Sergio Rajsbaum, Ivan Rapaport, and Éric Rémila

Distributed Approximation Algorithm for Resource Clustering 61
Olivier Beaumont, Nicolas Bonichon, Philippe Duchon, and
Hubert Larchevêque

Sharpness: A Tight Condition for Scalability . 74
Augustin Chaintreau

Discovery of Network Properties with All-Shortest-Paths Queries 89
Davide Bilò, Thomas Erlebach, Matúš Mihalák, and Peter Widmayer

Recovering the Long-Range Links in Augmented Graphs 104
Pierre Fraigniaud, Emmanuelle Lebhar, and Zvi Lotker

Computing Frequent Elements Using Gossip . 119
Bibudh Lahiri and Srikanta Tirthapura

X Table of Contents

Maintaining Consistent Transactional States without a Global Clock . . . 131
Hillel Avni and Nir Shavit

Equal-Area Locus-Based Convex Polygon Decomposition 141
David Adjiashvili and David Peleg

On the Power of Local Orientations . 156
Monika Steinová

Best Effort and Priority Queuing Policies for Buffered Crossbar
Switches . 170

Alex Kesselman, Kirill Kogan, and Michael Segal

Word of Mouth: Rumor Dissemination in Social Networks 185
Jan Kostka, Yvonne Anne Oswald, and Roger Wattenhofer

Non-preemptive Coordination Mechanisms for Identical Machine
Scheduling Games . 197

Konstantinos Kollias

Computing Approximate Nash Equilibria in Network Congestion
Games . 209

Andreas Emil Feldmann, Heiko Röglin, and Berthold Vöcking

On the Performance of Beauquier and Debas’ Self-stabilizing Algorithm
for Mutual Exclusion . 221

Viacheslav Chernoy, Mordechai Shalom, and Shmuel Zaks

Self-stabilizing Cuts in Synchronous Networks . 234
Thomas Sauerwald and Dirk Sudholt

Quiescence of Self-stabilizing Gossiping among Mobile Agents in
Graphs . 247

Toshimitsu Masuzawa and Sébastien Tixeuil

Gathering with Minimum Delay in Tree Sensor Networks 262
Jean-Claude Bermond, Luisa Gargano, and Adele A. Rescigno

Centralized Communication in Radio Networks with Strong
Interference . 277

Frantǐsek Galč́ık

Fast Radio Broadcasting with Advice . 291
David Ilcinkas, Dariusz R. Kowalski, and Andrzej Pelc

Author Index . 307

Mobile Entities Computing:

Models and Problems

Nicola Santoro

School of Computer Science, Carleton University, Canada
santoro@scs.carleton.ca

Abstract. By mobile entity computing (MEC) we refer to the study of the
computational and complexity issues arising in systems of autonomous compu-
tational entities located in a spatial universe U in which they can move. The
entities have computational capabilities (i.e., storage and processing), can move
in U (their movement is constrained by the nature of U), exhibit the same behav-
ior (i.e., execute the same protocol), and are autonomous in their actions (e.g.,
they are not directed by an external controller). Depending on the context, the
entities are sometimes called agents, other times robots.

Depending on the nature of U , two different settings are identified. The first
setting, sometimes called a graph world or discrete universe or netscape, is when
the U is a simple graph and the entities can move from node to neighbouring
node. An instance of such setting is that of mobile software agents in a network.
The other setting, called sometimes continuous universe, is when U is a geometric
space which the entities, endowed with wireless sensorial/communication capa-
bilities, can perceive and can move in. Instances of such settings are autonomous
mobile robots, and autonomous vehicular networks.

These settings have been long the subject of separate intensive investigations
in fields as diverse as AI, robotics, and software engineering, and only recently
by the distributed computing community. Indeed, the use of mobile software
agents is becoming increasingly popular when computing in networked environ-
ments, ranging from Internet to the Data Grid, both as a theoretical paradigm
and as a system-supported programming platform but the theoretical research
had focused mainly on the descriptive and semantic concerns. This situation
has drastically changed in recent years, as an increasing number of algorith-
mic investigations have started to examine the setting. Similarly, in the last few
years the problems related to the coordination and control of autonomous mobile
robots have been investigated not only in the traditional fields of AI, robotics
and control but also by researchers in distributed computing).

In both settings, the research concern is on determining what tasks can be
performed by the entities, under what conditions, and at what cost. In partic-
ular, a central question is to determine what minimal hypotheses allow a given
problem to be solved.

The purpose of this talk is to introduce the computational models and the fun-
damental problems in MEC; although the focus is on the discrete universe, several
of the introduced concepts extend, mutata mutandis, to the continuous case.

A. Shvartsman and P. Felber (Eds.): SIROCCO 2008, LNCS 5058, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Reputation, Trust and Recommendation

Systems in Peer-to-Peer Systems

Boaz Patt-Shamir�

School of Electrical Engineering
Tel Aviv University

Tel Aviv 69978, Israel
boaz@eng.tau.ac.il

The Internet has brought about the notion of peer-to-peer computing, whose
reliance on a central authority (let alone a central server) is minimal. It seems fair
to say that one of the Great Promises of the Internet is that such unmoderated
direct interaction between users will reduce much of the traditional overhead
due to the “man in middle” taking his share: either financially (in the context of
e-commerce) or conceptually (in the context of opinion shaping, say). The flip
side of this prospect, of course, is the danger that the system will deteriorate
into a lawless jungle: some users in a peer-to-peer system, possibly coordinated,
might exploit honest users to their advantage, since it appears that there is no
effective way to enforce rules in this game.

Consider eBay for example, where users can buy and sell stuff. The immense
success of this application of peer-to-peer computing is quite surprising for peo-
ple who are used to consider worst-case scenarios, since eBay is “ripe with the
possibility of large scale fraud and deceit” [6]. The answer, according to most
experts, lies in eBay’s closely watched reputation system [9]: after every transac-
tion, the system invites each party to rate the behavior of the other party (the
grades are “positive,” “negative” and “neutral”). The system maintains a public
billboard that records all feedbacks received for each user. It is common knowl-
edge that consulting the billboard is a key step before making a transaction. A
user with more than a few negative feedbacks has very little chance of getting
any business in eBay. While empirical evidence show that the system is success-
ful, many questions are unanswered. For starters, one annoying problem today
is that new users with little or no feedback will find it quite difficult to attract
any interest (either as buyers or sellers). Another clear weakness of the system
is that it allows, at least theoretically, for a clique of players to accumulate a
lot of positive reputation by praising each other, and then defraud näıve users.
Above all, it is not clear how to interpret the raw data on the billboard, or, in
other words, what algorithm should an honest user follow?

Another example of relying on reputation is recommendation systems. These
are systems that provide the users with recommendations about new products
(books and movies are a prime example, because of their relatively fast publish-
ing rate). In this case the difficulty is that users have differing tastes. Obviously,
not all users can expect to get good recommendations (if I am the only one who
� This research was supported in by the Israel Science Foundation (grant 664/05).

A. Shvartsman and P. Felber (Eds.): SIROCCO 2008, LNCS 5058, pp. 2–4, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Reputation, Trust and Recommendation Systems in Peer-to-Peer Systems 3

likes a certain book, who can recommend it to me?). Rather, recommendation
systems try to help users who share their taste with others. Recommendation
systems are usually based on professional critics (like book reviews in news-
papers) or on public opinion (like best-seller lists). More sophisticated systems
cluster users [8] or products [10], and try to predict the response of a user to
a new object based on the responses of similar users, or based on previous re-
sponses of that user to similar objects. However, these systems can be easily
fooled by malicious users (see, e.g., [7]). Another disadvantage of current meth-
ods is that they are self-perpetuating: by definition, they highlight—and thus
promote—popular products; in other words, this approach sets a high “entry
barrier” a new product must overcome to reach the users.

These examples demonstrate a central problem in peer-to-peer systems: how
to use the “good” information that exists in the system without being exploited
by the potentially bad information out there? Using reputation, i.e., making
judgments based on reports of interactions by others, seems to be the way to
go. We seek to explore the question of how exactly to make these judgments,
what types of guarantees are possible, and what are the reasonable models to
be considered and implemented in the context of reputation systems. In other
words, our goal is to study an algorithmic approach to reputation systems. Our
approach is based on a few surprisingly powerful theoretical results we have
obtained recently [1,2,3,4,5]. These results lead us to the somewhat counter-
intuitive conclusion that peer-to-peer systems can enjoy effective collaboration
without elaborate notions of trust, even when any portion of the peers exhibit
arbitrarily malicious (Byzantine) behavior. Moreover, our goal is that algorithms
will incur only a relatively modest overhead to the honest players, when com-
pared to algorithms for the case where all players are honest.

References

1. Alon, N., Awerbuch, B., Azar, Y., Patt-Shamir, B.: Tell me who I am: an interac-
tive recommendation system. In: Proc. 18th Ann. ACM Symp. on Parallelism in
Algorithms and Architectures (SPAA), pp. 1–10 (2006)

2. Awerbuch, B., Nisgav, A., Patt-Shamir, B.: Asynchronous active recommenda-
tion systems. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS,
vol. 4878, pp. 48–61. Springer, Heidelberg (2007)

3. Awerbuch, B., Patt-Shamir, B., Peleg, D., Tuttle, M.: Collaboration of untrust-
ing peers with changing interests. In: Proc. 5th ACM conference on Electronic
Commerce (EC), pp. 112–119. ACM Press, New York (2004)

4. Awerbuch, B., Patt-Shamir, B., Peleg, D., Tuttle, M.: Adaptive collaboration in
synchronous p2p systems. In: Proc. 25th International Conf. on Distributed Com-
puting Systems (ICDCS), pp. 71–80 (2005)

5. Awerbuch, B., Patt-Shamir, B., Peleg, D., Tuttle, M.: Improved recommendation
systems. In: Proc. 16th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA),
pp. 1174–1183 (2005)

6. Kollock, P.: The production of trust in online markets. In: Thye, S.R., Macy, M.W.,
Walker, H., Lawler, E.J. (eds.) Advances in Group Processes, vol. 16, pp. 99–124.
Elsevier Psychology, Amsterdam (1999)

4 B. Patt-Shamir

7. O’Mahony, M.P., Hurley, N.J., Silvestre, G.C.M.: Utility-based neighbourhood for-
mation for efficient and robust collaborative filtering. In: Proc. 5th ACM Conf. on
Electronic Commerce (EC), pp. 260–261 (2004)

8. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open
architecture for collaborative filtering of netnews. In: Proc. 1994 ACM Conf. on
Computer Supported Cooperative Work (CSCW), pp. 175–186. ACM Press, New
York (1994)

9. Resnick, P., Zeckhauser, R., Friedman, E., Kuwabara, K.: Reputation sytems.
Comm. of the ACM 43(12), 45–48 (2000)

10. Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based collaborative filtering
recommendation algorithms. In: Proc. 10th International Conf. on World Wide
Web (WWW), pp. 285–295 (2001)

Gathering Problem of Two Asynchronous

Mobile Robots with Semi-dynamic Compasses

Nobuhiro Inuzuka, Yuichi Tomida, Taisuke Izumi,
Yoshiaki Katayama, and Koichi Wada

Nagoya Institute of Technology, Gokiso-cho Showa, Nagoya 466-8555, Japan
inuzuka@nitech.ac.jp, u1tomida@phaser.elcom.nitech.ac.jp,

t-izumi@nitech.ac.jp, katayama@nitech.ac.jp, wada@nitech.ac.jp
Phone: +81-52-735-5050, Facsimile: +81-52-735-5408

Abstract. Systems of autonomous mobile robots have been attracted
as distributed systems. Minimal setting for robots to solve some class
of problems has been studied with theoretical concerns. This paper con-
tributes discussion on relationship between inaccuracy of compasses
which give axes of coordinate systems of robots and the possibility of
gathering robots. The gathering problem is to make all robots meet at a
single point which is not predefined. The problem has been shown to be
solvable for two robots with dynamically variable compasses within the
difference of π/4 between two robots. This paper improves the limit of
difference to π/3. This is shown with the fully asynchronous robot model
CORDA. Configurations and executions of robot systems for CORDA
with dynamic compasses are formalised. In order to deal with behaviors
of robots a concept of relative configurations is also introduced.

1 Introduction

Systems of autonomous mobile robots have been gathering attention as dis-
tributed systems that are expected effective for activity in deep sea or outer
space, where robots have to act autonomously. The system consisting of a large
number of simple robots is expected to be effective to work with fault-tolerance.
Hence minimal setting for robots which cope with this kind of difficult environ-
ment is worth studying from the practical and also theoretical points of view.
This paper focuses on a theoretical point. As an interesting problem this paper
studies the gathering problem. It is to make all robots meet at a single point
which is not predefined, normally without agreement of their coordinate sys-
tems. The gathering problem is a typical consensus problem and is important as
a preliminary stage of cooperative tasks by robots.

Literatures deal with this problem under various settings, which moderate the
setting by giving additional ability, such as a sense of multiplicity of robots, lim-
ited use of memory and a limited sense of direction or some inaccurate compasses.
We focus the gathering problem of two robots with inaccurate and variable com-
passes. Compasses are indispensable for autonomous robots in a distant space
but it is large merit if our algorithm requires less accurate compasses. Prencipe

A. Shvartsman and P. Felber (Eds.): SIROCCO 2008, LNCS 5058, pp. 5–19, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

6 N. Inuzuka et al.

Table 1. Results on gathering among robots with inaccurate compasses

models compasses tilt angle #robots

Souissi et al.[7]
Imazu et al.[8]

asynchronous fixed π/4 2

Katayama et al.[9] asynchronous
fixed

semi-dynamic
π/3

π/4
2

Yamashita et al.[12] asynchronous fixed π − ε 2

Izumi at al.[13] semi-synchronous semi-dynamic π/2 − ε n

this paper asynchronous semi-dynamic π/3 − ε 2

showed that even for two robots the gathering can not be solved when robots are
oblivious and share no global compass and do not have additional ability[1] on
his asynchronous model called CORDA[2,3]. Even on semi-synchronous model
given by Suzuki and Yamashita[4,5] two oblivious robots with no means of agree-
ing their orientation can not solve the problem. On the other hand Flocchini et
al.[6] showed that the problem is solvable for any number of robots when their
compasses are identical. Since then our interest moves to ease the perfect agree-
ment of compasses to more realistic inaccurate compasses and to explore the
minimal requirement to compasses to solve the problem.

Here an inaccurate compass means that it does not necessarily point the cor-
rect north direction and robots may not agree on direction. Souissi et al.[7] and
Imazu et al.[8] independently proposed models of inaccurate compasses, where
the inaccuracy is modelled by degrees of disagreement of compasses. The two
papers showed algorithms that solve the gathering problem with at most π/4 of
disagreement of two robots. Afterwards, inaccurate compasses are totally mod-
elled by Katayama et al.[9]. In addition to disagreement of compasses the paper
discusses time variance of compasses (called a dynamic compass) and whether
an absolute north exists or not. R. Cohen and D. Peleg[10] proposed another
models of inaccuracy of compasses and sensors. In their model robots acquire
erroneous coordinates which are different from the correct but robots share the
global direction. Souissi et al.[11] discusses gathering of robots in another setting,
where compasses are inaccurate but eventually become consistent.

Katayama et al.[9] also improved the disagreement level to allow gathering to
π/3 and also showed that it is possible for two robots with dynamic compass
with at most π/4 disagreement (each compass may differ π/8 from absolute
north) in full asynchronous model CORDA. In the case of fixed compasses this
disagreement level is improved to π − ε for any small positive ε[12]. Izumi et
al.[13] showed a gathering algorithm for dynamic compasses of at most π/2 − ε
disagreement on the semi-synchronous model for any positive ε. This is not
restricted for two robots. It is also shown that this is optimal on this model. The
results on the gathering problem among robots are summarized in Table 1.

This paper is on the line of [7,8,9]. The main target is to improve limit of dis-
agreement for dynamic compasses to solve gathering up to π/3−ε (π/6 from the
absolute north) for any positive ε on CORDA model. Difference of model causes

Gathering Problem of Two Asynchronous Mobile Robots 7

the difficulty in design of algorithms. While in the semi-synchronous model a
cycle consisting of observation, calculation and movement is atomic, in CORDA
events are occurred in separate. Consequently a robots may take several cycles
while another robot starts for a movement after observation. We give formal-
ization of configurations and executions of the robot system on CORDA with
dynamic compasses. Then we also introduce the concept of relative configuration
to understand behavior of robots.

The proposing algorithm is a generalized version of Imazu’s algorithm[8,9]. In
order to show the result we introduce a couple of concepts. Using the concepts
we first show the algorithm accomplishes the problem for fixed compasses with
π/3 − ε disagreement although this is not new.1 We show that the discussion is
extended to dynamic compasses by using the concept of relative configurations
and a range of change of relative configurations by change of compasses.

The following section introduces models of robots, their system, and com-
passes equipped. Section 3 defines the gathering problem after clarifying config-
urations and executions of a system. Section 4 proposes an algorithm and shows
its correctness. At first its correctness is given for fixed compasses with a differ-
ence less than π/3 by using a concept of relative configuration. This will lead us
to the correctness for dynamic compasses with a difference less than π/3.

2 Models of the System

In this section we review models of robots, their system, and compasses.

2.1 CORDA — A Model of Robots

We consider a system which consists of a set of robots R = {r1, r2, · · · , rn}.
Robots move on a two-dimensional plane, on which we assume a global Cartesian
coordinate. The global coordinate of ri at a time t is denoted by ri(t).

We assume CORDA, the model of robots, which is described as follows:

– A robot has no volume and its position is specified by a coordinate.
– A robot has its own rectangular coordinate system with whose origin is its

current position.
– Robots are uniform and anonymous. That is, they use an identical algorithm

and do not have any kinds of identifiers distinguishing a robot from others.
– A robots asynchronously repeats cycles consisting of the four states, Look,

Compute, Move and Wait, in this order.
– A robot equips a sensor, with which at an instant during Look a robot

acquires a set (or multiset) of coordinates of robots on the local coordinate
system. The set is called an observation. Since the local origin is at the own
position it distinguishes its own coordinate from others in spite of anonymity.

1 Indeed the proposing algorithm solves the gathering problem for robots with π/2−ε
disagreement for any ε > 0.

8 N. Inuzuka et al.

– During Compute a robot performs a local computation by a given algorithm
only using the observation as an input, and then results a coordinate, which
is intended to be a destination with respect to the local coordinate system.
A robot is oblivious. It remembers no information of the previous cycles.

– A robot moves on the line from the position at the beginning of Move to
the destination, the result of Compute. The schedule of movement is non-
deterministic. At any instant during Move a robot is on the line and always
goes forward but its position on the line at an instant is not prescribed. It
is not assumed to reach the destination during a single Move.

– Throughout Wait a robot does nothing.
– It has no direct means of communication. Observing others is only the mean.

A time period taken in a state or a cycle is finite but nondeterministically
variable and unpredictable. Compute may take unexpectedly long time and it
causes the observation to become old and yields the large difference between
the destination and the ideal destination that is to be determined by robots’
positions at the time when the robot is really going to move.

From the aspect of fairness we make two assumptions. The first is that a robot
travels at least the distance of min(d, δ) during a single Move, where d is the
distance to the destination given by Compute and δ > 0 is a constant distance
which is unknown but there exists for each robot. The second is that the length
of each cycle is at least a constant time ε(> 0) and it is finite.

Each time a robot has a local coordinate system, which is relatively deter-
mined to the global one by three parameters, the tilt angle of axes ψ, the scale
ratio sc, and the origin o. Given a global coordinate p its coordinate in terms

of the local one is got by the function, Zψ,sc,o(p) = 1
sc

(
cosψ sin ψ

− sinψ cosψ

)
(p − o).

The function is called an observation function. Since the scale ratio is fixed for
a robot we often do not care about a scale and denote the function by Zψ,o.

2.2 Compasses

We assume a robot to equip a compass, a device indexing a direction. The local
y-axis of a robot is directed by its compass. The direction of compass of a robot
ri is given as an angle with respect to a global coordinate system and denoted
by ψi. We identify the compass with its direction ψi.

To argue the effect of inaccuracy of compass we review models of compasses.
Models are totally presented in Katayama et al.[9] in different aspects, including
the variance range of compasses among robots, time variance of compasses, and
existence or inexistence of an absolute direction, say the absolute north. The first
factor is argued by giving an upper limit of tilt angles and combing with the
other factors. We briefly reviews the second and the third points.

We imagine three types of time variance. A compass which may always vary
through time is called a full dynamic compass (FDC). A compass which does
not change through a cycle is a semi dynamic compass (SDC). An SDC may
change when a cycle switches to another. A fixed compass (FXC) is one which

Gathering Problem of Two Asynchronous Mobile Robots 9

never changes through execution. FXC ⊆ SDC and SDC ⊆ FDC, where FXC,
SDC, and FDC denote the classes of compasses of the types.

Assuming the absolute north or the global compass and an upper limit of
tilt angles from it the range of variance is restricted. A compass keeping the
difference from the absolute north within an upper limit α/2 is said α-absolute
error. If we only assume the upper bound α for the difference of tilt angles
between any pair of robots, we call the compass α-relative error. An α-absolute
error compass is also α-relative error.

These three inaccuracy are to be combined. For example, an α-relative error
SDC is of relative error, of semi-dynamic variance and with an upper limit α. In
the rest of paper we deal with relative-error FXC and absolute-error SDC.

For the rest of this paper, we prepare a couple of notations. A line on two
different points x and y is denoted by xy. A line through x with the direction
which is tuned counterclockwise by θ from the positive direction of x-axis is
denoted by xθ. When we write x y it is a segment from x to y. x y also means
the length of the segment. �xyz is a triangle whose apexes are x, y, and z, and
it means the set of points inside and the border of the triangle. For two points
p = (x1, y1) and q = (x2, y2), � −→p q means the degree ρ s.t. (x2 − x1, y2 − y1) =
(r cos ρ, r sin ρ) for a positive r.

3 Configurations, Executions and the Gathering Problem

We formalize executions taking account of the situations that (1) we consider
only FXC and SDC which do not change direction during a cycle, and that (2)
only instants of observation and the schedule of movement affect the system.

Let us call a robot active at t when it observes at t. We call a time instant
t active when there is at least an active robot at t. A step is a time duration
between an active time and its immediately following active time. We also define
a robot step as the time duration between an active time ta and the first active
time until which all robot performs at least one cycle after ta.

A configuration of the system at t is 〈R(t), Ψ(t)〉, where R(t) is an n-tuple
(r1(t), . . . , rn(t)) of global coordinates of n robots at t, and Ψ(t) is an n-tuple
(ψ1(t), · · · , ψn(t)) of compass angles of robots.

Compute determines a destination. After an observation even before the end
of Compute a destination is already determined no matter the robot knows.
That is, we define the destination desti(t) of ri as the destination given by
Compute of ri using an observation at t or the last observation of ri before
t. For t before the first observation we let desti(t) be the initial position of the
robot. Let denote the n-tuple (dest1(t), . . . , destn(t)) by Dest(t).

We do not care scales of local coordinates.
The set of active robots at t, denoted by Γ (t), is also a factor determining an

execution. Now we formalize an execution. For a given algorithm A an execution
of the system is a sequence of Γ (t), R(t), Ψ(t) and Dest(t) for all active time
t0, t1, . . . , tk, . . .,

〈Γ (t0), R(t0), Ψ(t0),Dest(t0)〉, · · · , 〈Γ (tk), R(tk), Ψ(tk),Dest(tk)〉, · · · ,

10 N. Inuzuka et al.

satisfying the following conditions for j = 0,
⎛
⎜⎜⎜⎝

Γ (t0) �= ø
ri(t0) = the initial position of ri

desti(t0) =
{

r(t0) if ri �∈ Γ (t0)
Z−1(A({Z(r1(t0)), . . . , Z(rn(t0))}) if ri ∈ Γ (t0)

and for j ≥ 1,
⎛
⎜⎜⎜⎜⎜⎜⎝

Γ (tj) �= ø

ri(tj) = (1 − γ)ri(tj−1) + γdesti(tj−1) for some γ ∈ [0, 1]
i.e. ri(tj) ∈ ri(tj−1) desti(tj−1)

desti(tj) =
{

desti(tj−1) if ri �∈ Γ (tj)
Z−1(A({Z(r1(tj)), . . . , Z(rn(tj))}) if ri ∈ Γ (tj),

where Z = Zψi(tj),ri(tj) the observation function of ri at tj and Z−1 is the inverse
mapping of it, and A is the function determined by the given algorithm.

When a robot ri becomes active at t, i.e. ri ∈ Γ (t), ri changes its destination
to new one, determined by A with an input of observation. A robot moves on the
line to the destination. Of course a robot does not really acquire a destination at
the time of observation before finishing Compute. The robot will start Move

at a time after the observation, possibly after a couple of steps. During steps in
which the robot does not start the γ is 0. When a robot is inactive at tj it is still
on the line ri(tj−1) desti(tj−1) and it holds ri(tj−1) desti(tj−1) ⊇ ri(tj) desti(tj)
because ri(tj) ∈ ri(tj−1) desti(tj−1) and desti(tj) = desti(tj−1).

Depending on the model of compasses Ψ(tj) is subjected the following condi-
tions, for any robots ri and ri′ (i �= i′) and any time tj :⎧⎪⎪⎨

⎪⎪⎩

|ψi(tj) − ψi′(tj)| ≤ α in the case of α-relative error compasses
ψi(tj) ∈ [−α/2, α/2] in the case of α-absolute error compasses
ψi(t0) = ψi(t1) = · · · in the case of FXC
ψi(tj) = ψi(tj−1) if ri �∈ Γ (tj) in the case of SDC

Executions are also restricted from the fairness. That is, when a robot ri is
active at ta and also at tb > ta it must satisfy ri(ta) ri(tb) ≥ min(d, δ) where
d = ri(ta) desti(ta) and δ > 0 is the constant distance depending on ri. It must
also satisfy ε ≤ tb − ta < ∞ where ε > is a constant shared by robots. It is
also subjected that any robot is included in Γ (tj) for infinitely many j. A fair
execution must satisfy all of them. We only consider fair executions.

When we have an algorithm A and the initial positions R(t0) of robots an
execution is determined by three factors, that is, choices of active robots Γ (tj),
the changes of compasses Ψ(tj) and the degree of movement represented by γ
for each tj . These make a schedule.

Throughout this paper we consider the system of two robots, i.e. R = {r1, r2}.
An algorithm A is said to solve the gathering problem when for any fair execution
of A there is a time instant t̂ s.t. r1(t) = r2(t) for any t ≥ t̂.

Gathering Problem of Two Asynchronous Mobile Robots 11

4 A Gathering Algorithm Aα,θ

white x

y

a unit
length

the destination
of robot r1

r1

r2red

blue

white x

y

(a) α coloring (b) the movement

 for white

p

l1 = r1
θ

l2 = r2
α

θ α

α

α

Fig. 1. α-coloring and the movement for white

For our algorithm we prepare
words. A robot is said to ob-
serve the other at the di-
rection φ when its observa-
tion includes a point (x, y) =
(r cosφ, r sinφ) for a positive
r. For a given upper limit α
of difference of compasses we
color angles of seeing a robot
as follows (Fig. 1 (a)), where π
is classified to blue for α = 0.

– an angle in [0, π − α) is
called a red angle.

– an angle in [π − α, π + α) is called a white angle.
– an angle in [π + α, 2π) is called a blue angle.

When a robot observes the opponent at an angle in a color it is said to see the
color. This coloring for angles and for observation is called α-coloring.

Table 2 shows the algorithm Aα,θ. It takes two parameters α the upper limit
of difference between compasses, and θ, given as greater than α. We will see
that this algorithm works for robots with FXC and also SDC under conditions.
Basically red and blue are placed opposite. When a robot sees red the opponent
is expected to see blue. If this is true a robot approaches to another waiting and
they have a successful rendezvous. Because of disagreement of compasses the
white region is prepared. Seeing white it moves to a place to be expected to see
red. The place is calculated by the two lines, the line l1 through itself with a tilt
angle −θ and the line l2 through the opponent with angle −α. Because α < θ
the lines always cross below the robot. It sets the destination to the point p on
l1 a unit length further from the crossing point of l1 and l2 (see Fig. 1 (b)).

4.1 Relative Configurations and Relative Configuration Map

In order to see the behavior of robots we define a view from a robot. For
〈R(t), Ψ(t)〉 = 〈(r1(t), r2(t)), (ψ1(t), ψ2(t))〉, a relative configuration (RC for
short) from ri ∈ {r1, r2} is 〈φ(t), δ(t)〉, s.t. ri observes rj ∈ {r1, r2} − {ri}
at the direction φ(t) or Z(rj(t) − ri(t)) = (r cosφ(t), r sin φ(t)) for a positive r,
and δ(t) = ψj(t) − ψi(t), where Z is the observation function of ri at t. We call
a robot from which RC’s are considered a base robot and the other an opponent
robot. In the rest of paper r1 denotes a base robot. The vector from a base robot
to its opponent is called a base-vector. The color that a base robot sees is called a
base-color of the RC. An opponent-color is the color being seen by the opponent.

Fig. 2 shows a map of RC (called the RC-map). It is a two-dimensional plane
of parameters φ and δ and shows opponent-colors of places on the plane. Base-
colors are shown on the φ axis. It is helpful to understand robots’ behavior. For

12 N. Inuzuka et al.

Table 2. A pseudo-code of an algorithm Aα,θ

1. if observes only a coordinate at the origin then make a null movement
2. elseif observes a red then make a null movement
3. elseif observes a blue then make a movement toward the coordinate of the opponent
4. else (/* observes a white */) do
5. l1 := o−θ = r1−θ (the line of tilt angle −θ through the origin or itself);
6. l2 := r2−α (the line of tilt angle −α through the opponent);
7. p := the point a unit length further from the cross point of l1 and l2 on l1;
8. make a movement toward p.

−π π

δ

−α

α
φ=π−α

−π+α

I
I'

II' II

III
III

III' φ

red whitebase-color = bluewhite

blue
red

red

red

blue
blue

II

opponent-color

= white

white

φ=π−θ

φ=δ−θ

regions base/opp. conditions

I red/blue δ + α ≤ φ < π − α
II white/blue π − α ≤ φ < δ + π
III white/red δ − π ≤ φ < α − π

I’ blue/red α − π ≤ φ < δ − α
II’ blue/white δ − α ≤ φ < 0
III’ red/white 0 ≤ φ < δ + α

Fig. 2. The relative configuration map, regions and the conditions to divide regions

example a compass of an α-relative or -absolute FXC is fixed within the range
(−α, α) then the RC on the map is always on a line parallel to the φ axis.

4.2 Regions in RC-Map for Aα,π/3

In this paragraph let the upper limit α of a disagreement angle between two
robots be less than π/3 and consider Aα,θ for 0 ≤ α < θ ≤ π/3. Here we give a
correctness of it for α-relative FXC.

The RC-map is used to classify initial configurations of robots. Then we see
behavior of robots in each region. We have six regions as shown in Fig. 2. A
region with a Roman numeral and another with the same numeral plus a prime
(’) are symmetric. Because of symmetry we need understand three situations.

The table in Fig. 2 shows colors and conditions for the regions. For example,
Fig. 4 shows a situation of robots in Region II. The region is for base-color white
and opponent color blue. As shown in Fig. 4-(a), in order to see blue from r2 it
has to hold φ < δ + π. Fig. 4-(b) illustrates the range of φ from the restriction
to see white. The angle φ has to be equal or greater than π − α. It has not to
exceed the lower limit π + α but it is subsumed by φ < δ + π because δ ≤ α.

We state the correspondence between regions and conditions without proofs:

Lemma 1. When the conditions of each region are satisfied by an RC the base-
and opponent-colors of the RC are those stated in Fig. 2. The conditions cover
all cases and are exclusive.

Gathering Problem of Two Asynchronous Mobile Robots 13

In advance we summarize the correctness proof of algorithm for robots with FXC
and also SDC compasses. The correctness will be given by tracing the transition
of regions of RC. We can easily see the gathering is achieved in Regions I and I’
and for other cases robots transit to these regions. Our strategy is to show that
RC always moves right to left monotonically and it moves at least a constant
in a robot step. In the case of FXC RC only moves in parallel to φ axis. Then
RC always reaches I or I’ unless robots gather before they reach the regions. We
also show that RC stops before certain lines.

This proof is a preparation for the SDC case. When robots have SDC com-
passes they change RC even if they do not make any movement. First we under-
stand the area of possible RC without movement. We call the area the mobility
range. (See Figs. 7 and 8.) In this case RC does not necessarily move right to
left but the mobility range itself always moves right to left. Instead of RC we
can argue the transition of the center of the mobility range. We show that the
whole area of mobility range can fill in the safe region I or I’. It will be certified
by showing that even with SDC compasses the movement of RC is characterized
in the same way as FXC in a period of a robot step and RC always stops before
the certain lines where the mobility range falls into Regions I or I’.

4.3 Correctness of Aα,θ for α-Relative FXC with α < θ ≤ π/3

In this section we show lemmata arguing movement of robots in the regions and
transition of regions. We use the local coordinate system of a base-robot r1 for
all reference of coordinates and angles. Lemmata are given for α-relative FXC
and 0 ≤ α < θ ≤ π/3. Then we show the correctness of Aα,π/3 for α < π/3.

Lemma 2. For any execution of α-relative FXC using Aα,θ starting an RC in
region I or I’ includes a time t s.t. r1(t′) = r2(t′) for any t′ ≥ t, where 0 ≤ α <
θ ≤ π/3 . In the execution it holds φ(tk−1) = φ(tk) unless r1(tk) = r2(tk).

Proof. By Lemma 1 the RC 〈φ(t0), δ(t0)〉 at t0 in region I satisfies the condition
given in Fig. 2 and its base- and opponent-colors are red and blue, respectively.

We claim that for any allowed execution starting at t0 it holds for all tk unless
r1(tk) = r2(tk),

1. r1(tk) = dest1(tk) = r1(t0),
2. dest2(tk) = r2(t0) before r2 becomes active and dest2(tk) = r1(t0) after that.
3. r2(tk) ∈ r2(t0) r1(t0), and
4. 〈φ(tk), δ(tk)〉=〈φ(t0), δ(t0)〉 and the colors seen by robots do not change.

We found that the claim yields the lemma considering,

– r2 approaches to r1 during its robot step by at least a constant distance (or
the distance to r1 when it is less than the constant), and

– r1 and r2 take null movement after the time gathering together.

Then we show the claim by induction on k. It is trivial for t0. Assuming it for
tk we check for tk+1. The first two are direct from 〈φ(tk), δ(tk)〉=〈φ(t0), δ(t0)〉,

14 N. Inuzuka et al.

i.e. the two robots see red and blue at tk. The third one is also direct from
the definition of execution, because r2(tk+1) ∈ r2(tk) dest2(tk) = r2(t0) r1(t0).
r2(tk+1) ∈ r2(t0) r1(t0) means that r2 does not leave from the initial line through
r1(t0) and r2(t0). It yields the last one, that is, RC does not change.
�

r1(ta)

dest1(ta)

r2(tb)

r1(tb)

r1(tc)

red
red

r2(ta)

dest2(ta)

r1(ta)

dest1(ta)

red

blue

white

y

red

blue

blue

p1

p2

q1 q2

xred

r2(ta)

dest2(ta)

blue

blue

(a) (b)

r2(tc)

Fig. 3. (a) The situation of Lemma 3 and
(b) Case (II) of the proof

Lemma 2 can be extended for the case
which does not start at but enters I
or I’ during execution. We define an
imaginable RC from the position of
the destination of r1 to the destination
of r2, which we call a destination RC.
That is, for a time t a destination RC is
〈φ′(t), δ(t)〉 s.t. Z(dest2(t)−dest1(t)) =
(r cosφ′(t), r sinφ′(t)) for ∃r > 0 and
δ(t) = ψ2(t) − ψ1(t) and Z is the ob-
servation function of r1 at t.

Lemma 3. Consider any execution of α-relative FXC using Aα,θ where 0 ≤
α < θ ≤ π/3. If there is a time (not necessarily an active time) ta satisfying
(the situation is illustrated in Fig. 3),

– the RC 〈φ(ta), δ(ta)〉 and the destination RC 〈φ′(ta), δ(ta)〉 are in I;
– dest2(ta), r1(ta) and dest1(ta) are on a line in this order; and
– for any p1, p2 ∈ r1(ta) dest1(ta) s.t. p1 dest1(ta) ≤ p2 dest1(ta) and q1, q2 ∈

r2(ta) dest2(ta) s.t. q1 dest2(ta) ≤ q2 dest2(ta), it holds � −−→p1 q1 ≥ � −−→p2 q2.

then it holds the followings, where φ̂=min(�
−−−−−−−−−−−−−→
dest1(ta) dest2(ta), �

−−−−−−−−−−→
dest1(ta) r1(ta)).

1. There is a time t s.t. r1(t′) = r2(t′) for any t′ ≥ t; and
2. φ(tk−1) ≥ φ(tk) ≥ φ̂ for any active time tk after ta,

Proof. Let tb denote the first active time after ta. Because the RC 〈φ(ta), δ(ta)〉
and the destination RC 〈φ′(ta), δ(ta)〉 are both in Region I, the two robots are
in I during between ta and tb.

(I) Case that r1 is active at tb When r1 stops at tb it sees red and makes
null movements. The situation is the same until r2 becomes active. At the first
active time of r2 it sees blue and it is the situation of Lemma 2.

(II) Case that r2 is active at tb When r2 stops at tb it sees blue and decides
the destination at r1(tb) which is somewhere between r1(ta) and dest1(ta). The
first active time tc of r1 after tb r2 is at somewhere in �r2(tb)r1(tb)r1(tc). (r2(tc)
is not necessarily on the segment r2(tb)r1(tb) because r2 may have several active
times before tc.) Then at tc robots are in Region I and at the next active time
of r2 robots are in the situation of Lemma 2.
�

Lemma 4. Consider any execution of Aα,θ starting an RC in regions II, III,
II’ or III’, where α < θ ≤ π/3. Then,

Gathering Problem of Two Asynchronous Mobile Robots 15

white

r1

p

φ
π−α

white

φ

δ+π

blue

blue

r2

r2

(a) (b)

θ
σ =
π−(α+θ)

r1(t0)

r1(tk-1)

r1(tk)

dest2(tk)

dest2(tk-1)

dest1(tk)

dest1(tk-1)

p

φ(tk-1)

φ(tk)

r2(tk-1)

r2(tk)

(c)

r1

θ

l1

l2
l1

Fig. 4. Behavior of robots in Region II

p

redr2 r1

x

white

blue

l1

l2

Fig. 5. Region III

i It includes a time t s.t. r1(t′) = r2(t′) for any t′ ≥ t; and
ii In the execution it holds φ(tk−1) ≥ φ(tk) ≥ φ̂ unless r1(tk) = r2(tk),

where φ̂ = π − θ when the execution starts from II or III and φ̂ = δ − θ when
the execution starts from II’ or III’.

Proof. We consider II. We can have a symmetric argument for II’.
From the assumption and Lemma 1 the base- and opponent-colors of

〈φ(t0), δ(t0))〉 are white and blue, respectively. If r1 becomes active first then
the algorithm sets dest1(t0) to p as shown in Fig. 4. dest1 remains p until r2
becomes active. If r2 is activated first dest2 is set to the position of r1 and r2
approached to r1 until r2 meets r1 or r1 becomes active.

Let us consider the time ta when both r1 and r2 are activated without complet-
ing gather. We claim to hold the followings for all tk ≥ ta unless r1(tk) = r2(tk)
or the RC goes out from the region II. This is shown by induction on k.

1. dest2(tk), r1(tk) and dest1(tk) are in r1(tk−1) dest1(tk−1) on l1 and lie in this
order from r1(tk−1) to dest1(tk−1) (see Fig. 4-(c)).

2. r2(tk) ∈ �r2(tk−1)dest2(tk−1)dest2(tk), and
3. φ(tk−1) ≥ φ(tk) ≥ π − θ,

Robots go forward at least the constant, i.e. r1 goes along l1 and r2 approaches
to r1. Then there is a time tb at which it becomes r1(tb) = r2(tb) and r1 is active
at tb or the RC is in Region I at tb. The former happens in the case that r2
reaches r1 while r1 stay somewhere it sees r2 in Region II. In this case tb is the
time at which r1 awakes and it realizes gathering. Since gathering is achieved
within Region II it keeps φ(t) > δ + π > π − θ.

For the latter the situation matches Lemma 3. It guarantees that robots gather
and it keeps satisfying φ(t) ≥ min(�

−−−−−−−−−−−−→
dest1(tb) dest2(tb), �

−−−−−−−−−−→
dest1(tb) r1(tb)) =

min(�
−−−−−−−−−−−−→
dest1(tb) dest2(tb), π − θ) = π − θ before gathering. The symmetric ar-

guments for the case starting from II’ guarantees the angle from r2 to r1,
φ(t) + π − δ ≥ π − θ which implies φ(t) ≥ δ − θ.

We consider III. See Fig. 5. In this case only r1 moves toward its destination
designated as p in the figure while r2 sees red. It continues until r1 goes across

16 N. Inuzuka et al.

I

φ

white

blue

III

r1(ta)
r2(ta)
=r2(tb) r1(tb)

r1(tc)
=r2(tc)

r1(td)
r1(te)

r2(td)

=r2(te)

III
II

II

θ δ φ=π−α−π+α

I

II

IIIIII

φ=π−θ

tbta tctdte

red

red

Fig. 6. An example movement of robots

the point x which is the cross point of l1 and the horizontal axis of r2. Let tc to
denote the active time of r2 after the time when r1 reaches x. Then the situation
at tc is the same as at ta of the discussion for Region II.
�

Then the correctness of the algorithm is direct from Lemmata 2, 3 and 4.

Theorem 1. The gathering problem for α-relative FXC for α < π/3 is solved
by Aα,θ for θ s.t. α < θ ≤ π/3.

For the following section we prepare another lemma, which we do not give a
proof but it is direct from the arguments in the previous lemmata.

Lemma 5. Consider any execution of α-relative FXC using Aα,θ, where α <
θ ≤ π/3.

– Then it holds φ(tk−1) ≥ φ(tk) unless r1(tk) = r2(tk) for any active time tk;
– it keeps φ(tk) ≥ φ̂ for any active time tk where φ̂ = π−θ when the execution

starts from II, or III or φ̂ = δ − θ when it starts from II’, or III’; and
– For active times t and t′ > t between which a robot step is passed if 〈φ(t), δ(t)〉

is not in I nor I’, then φ(t)−φ(t′) is at least min(ξ, η), where ξ is a constant
depending on only 〈R(t0), Ψ(t0)〉 and η is the minimal angle to enter I or I’
from 〈φ(t), δ(t)〉.

We show an example movement of robots in Fig. 6. Robots are in Region III
at ta then only r1 can move downward. When r1 stops and observes r2 at tb they
are still in Region III. At tc, r2 awakes in Region II and it finds blue then goes
to r1. When r2 stops on the way to its destination at td robots are in Region II.
After that at te r2 reaches to the position where r1 had been at td. At that time
r1 is downward on the line and robots are in Region I. In the figure arrows show
φ(t) and it can be seen that φ(ta) > φ(tb) > φ(tc) > φ(td) > φ(te) = π − θ.

4.4 Correctness of Aα,π/3 for α-Absolute SDC with α < π/3

This paragraph shows the correctness of Aα,π/3 for α-absolute SDC with α < π/3
using the RC-map. Variance of compasses allows change of an RC even the robots
do not move. However we can see that there is an RC of which the range of
variance by compasses is included in the safe regions I or I’ when α < π/3. We
also see that the algorithm Aα,π/3 will bring the RC to the point.

Gathering Problem of Two Asynchronous Mobile Robots 17

by movement
of ψ1

by movement of ψ2

φ

δ

α/2

−α

α

 (a) ψ
1
 = ψ

2
 = 0

φ

α/2+ζ

α/2−ζ

(b) ψ
1
 = ψ

2
 = ζ

ξ ξ
α/2

α/2

α/2+ζ

r1 ξ

ζ

ξ

α

−α

r2

r1

r2

α/2−ζα/2

Fig. 7. Ranges of config. change of α-
absolute error compasses

−π π

δ

−α

α −π+α

I

I'
II' II

III
III

III' φ

red white bluewhite

blue
red

red

red

blueblue

II

white

white

φ=π−αφ=π−θφ=δ−θ

Fig. 8. Mobility ranges of α-absolute error
compasses for α < π/3

First let us imagine robots r1 and r2 with α-absolute SDC compasses with
ψ1 = ψ2 = 0, i.e. both compasses have no bias. Let r2 be in a direction ξ from
r1. The RC of this situation is plotted at (ξ, 0) on the φ axis (Fig. 7-(a)).

Now we consider change of compasses. At first we think of change of ψ2. It
directly affects the change of RC on the vertical δ coordinate. When ψ2 turns an
angle η the RC moves from (ξ, 0) to (ξ, η). Since ψ2 has mobility in [−α/2, α/2]
their RC takes in range {(ξ, η) | −α/2 ≤ η ≤ α/2}. As for change of ψ1, it affects
both coordinates. When ψ1 rotates η the relative angle δ decreases by η and φ
also decreases by η. Then their RC takes in {(ξ − η, −η) | − α/2 ≤ η ≤ α/2}.

Let us think of robots on the φ axis, i.e. δ = 0. If δ = 0 and ψ1 = ψ2 = 0
the range of RC without move of their positions is {(ξ − η1, −η1 + η2) | η1, η2 ∈
[−α/2, α/2]} (Fig. 7-(a)). δ = 0 does not mean ψ1 = ψ2 = 0 but ψ1 = ψ2. When
ψ1 = ψ2 = ζ the mobility range of the RC is {(ξ − η1, −η1 + η2) | η1, η2 ∈
[−α/2 − ζ, α/2 − ζ]} (Fig. 7-(b)).

Then absolute-SDC robots are treated as their RC and its mobility range.
Generally robots in 〈R(t), Ψ(t)〉 = 〈(r1(t), r2(t)), (ψ1(t), ψ2(t))〉 have their RC,
〈φ(t), δ(t)〉 with a mobility range {(φ(t) − η1, −η1 + η2) | η1, η2 ∈ [−α/2 −
ψ1(t), α/2 − ψ1(t)]}, where Zψ1(t),r1(t)(r2(t) − r1(t)) = (ρ cosφ(t), ρ sin φ(t)) for
ρ > 0 and δ(t) = ψ2(t) − ψ1(t).

Fig. 8 shows the RC-map for α < π/3 and the regions. When we try to fit mo-
bility ranges to the map we have Lemma 6. We also confirm behavior in I and I’ in
Lemma7. When for the configuration 〈R(t), Ψ(t)〉 = 〈(r1(t), r2(t)), (ψ1(t), ψ2(t))〉
of robots, ψ1(t) = α, the RC is in the most right edge of the mobility area. The
mobility range is taken the left hand side from the RC. We can observe the
following lemma from Fig. 8.

Lemma 6. (1) When ψ1(t) = α and RC satisfies π − θ ≤ φ(t) ≤ π − α the
mobility range of the RC is inside Region I.
(2) When ψ2(t) = α and RC satisfies δ − θ ≤ φ(t) ≤ δ − α the mobility range of
the RC is inside Region I’.

Lemma 7. While RC is in I or I’ changing compasses has no effect for the
movement of robots.

Lemmata 6 and 7 allow robots to bring their RC and mobility range to I or I’ and
to gather. Within the mobility range let us call a point satisfying ψ1 = ψ2 = 0

18 N. Inuzuka et al.

the center of the RC. When we have 〈φ(t), δ(t)〉, the center is 〈φ(t) + ψ1(t), 0〉,
which is the RC when the compasses of both robots are coincident with the global
one. We define φg(t) as the angle to see r2 from r1 with the global compass, i.e.
φg(t) = φ(t) + ψ1(t). Then the center of 〈φ(t), δ(t)〉 is 〈φg(t), 0〉.

The discussion for FXC is valid for each instant, which yields the following.

Lemma 8. Consider any execution of α-absolute SDC using Aα,θ, where α <
θ ≤ π/3. Then,

i It holds φg(tk−1) ≥ φg(tk) unless r1(tk) = r2(tk) for any active time tk;
ii For active times t and t′ > t between which a robot step is passed if 〈φ(t), δ(t)〉

is not in I nor I’, then φg(t) − φg(t′) ≥ min(ξ, η), where ξ is a constant
depending only on 〈R(t0), Ψ(t0)〉 and η is the minimal angle to enter I or I’
from 〈φ(t), δ(t)〉; and

iii It holds φg(t) ≥ π − θ − α/2 when the execution starts from I, II or III and
φg(t) ≥ δ − θ − α/2 when it starts from I’, II’ or III’.

Proof. Since during a single robot step change of compass does not affect behavior
of the robot, it holds (i) and (ii) if ψ1 does not change. Although ψ1 may change,
if we take φg(tk) it holds (i) and (ii) because changing compass does not make
the center of range change.

The φ(t) of RC is restricted by φg(t) and it satisfies φg(t) − α/2 ≤ φ(t) ≤
φg(t) + α/2. Since φ(t) ≤ π − θ when the execution starts in Region II or III it
has to be φg(t) ≤ π − θ − α/2. When the execution starts in Region II’ or III’
the symmetric arguments gives φg(t) ≥ δ − θ − α/2.

�
Lemmata 6–8 yield the following theorem.

Theorem 2. The gathering problem for α-absolute SDC for α < π/3 is solved
by Aα,θ for θ = π/3.

Proof. Lemma 7 tells that in I and I’ robots gather as same as FXC. For other
region Lemma 8 tells that the algorithm makes φg(t) left by a constant angles ev-
ery robot step and it must stop before the line φ = π−θ−α/2 or φ = δ−θ−α/2.
Then the whole mobility range fits in Region I or I’ by lemma 6. When it hap-
pens Lemma 7 guarantees to have gathering.
�

Impossibility of gathering for π/2-absolute SDC robots even on the semi-
synchronous model is proven in [13]. The optimal angles where gathering is
solvable for CORDA with absolute-SDC is still unclear between π/3 and π/2.

References

1. Prencipe, G.: On the feasibility of gathering by autonomous mobile robots. In: Pelc,
A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 246–261. Springer,
Heidelberg (2005)

2. Prencipe, G.: CORDA: distributed coordination of a set of autonomous mobile
robots. In: ERSADS 2001, pp. 185–190 (2001)

Gathering Problem of Two Asynchronous Mobile Robots 19

3. Prencipe, G.: Distributed coordination of a set of autonomous mobile robots. PhD
thesis, Università di Pisa (2002)

4. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robot – formation and
agreement problems. In: SIROCCO 1996. Carleon Scientific, pp. 313–330 (1996)

5. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM Journal of Computing 28(4), 1347–1363 (1999)

6. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
oblivious robots with limited visibility. Theoretical Computer Science 337(1-3),
147–168 (2005)

7. Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots
with inaccurate compasses. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS,
vol. 4305, pp. 333–349. Springer, Heidelberg (2006)

8. Imazu, H., Itoh, N., Katayama, Y., Inuzuka, N., Wada, K.: A gathering problem
for autonomous mobile robots with disagreement in compasses. In: 1st Workshop
on Theoretical Computer Science in Izumo (in Japanese), pp. 43–46 (2005)

9. Katayama, Y., Tomida, Y., Imazu, H., Inuzuka, N., Wada, K.: Dynamic Compass
Models and Gathering Algorithms for Autonomous Mobile Robots. In: Prencipe,
G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 274–288. Springer, Hei-
delberg (2007)

10. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate
sensors and movements. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS,
vol. 3884, pp. 549–560. Springer, Heidelberg (2006)

11. Souissi, S., Défago, X., Yamashita, M.: Using eventually consistent compasses to
gather oblivious mobile robots with limited visibility. In: Datta, A.K., Gradinariu,
M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 484–500. Springer, Heidelberg (2006)

12. Yamashita, M., Souissi, S., Defago, X.: Tight bound on the gathering of two obliv-
ious mobile robots with inconsistent compasses. Research Report, JAIST, IS-RR-
2007-006 (2007)

13. Izumi, T., Katayama, Y., Inuzuka, N., Wada, K.: Gathering Autonomous Mobile
Robots with Dynamic Compasses: An Optimal Result. In: DISC 2007. LNCS,
vol. 4738, pp. 298–312. Springer, Heidelberg (2007)

Locating and Repairing Faults in a Network

with Mobile Agents�

Colin Cooper1,��, Ralf Klasing2, and Tomasz Radzik1

1 Department of Computer Science, King’s College, London WC2R 2LS, UK
{Colin.Cooper,Tomasz.Radzik}@kcl.ac.uk

2 LaBRI – Université Bordeaux 1 – CNRS, 351 cours de la Libération,
33405 Talence cedex, France
Ralf.Klasing@labri.fr

Abstract. We consider a fixed, undirected, known network and a num-
ber of “mobile agents” which can traverse the network in synchronized
steps. Some nodes in the network may be faulty and the agents are to
find the faults and repair them. The agents could be software agents,
if the underlying network represents a computer network, or robots, if
the underlying network represents some potentially hazardous physical
terrain. Assuming that the first agent encountering a faulty node can
immediately repair it, it is easy to see that the number of steps neces-
sary and sufficient to complete this task is Θ(n/k + D), where n is the
number of nodes in the network, D is the diameter of the network, and k
is the number of agents. We consider the case where one agent can repair
only one faulty node. After repairing the fault, the agent dies. We show
that a simple deterministic algorithm for this problem terminates within
O(n/k + D log f/ log log f) steps, where f = min{n/k, n/D}, assuming
that the number of faulty nodes is at most k/2. We also demonstrate the
worst-case asymptotic optimality of this algorithm by showing a network
such that for any deterministic algorithm, there is a placement of k/2
faults forcing the algorithm to work for Ω(n/k+D log f/ log log f) steps.

Keywords: Distributed computing, Graph exploration, Mobile agents.

1 Introduction

The black hole search problems, which have been recently extensively studied,
assume that a mobile agent traversing a network is terminated immediately
upon entering a faulty node. The task for a group of agents is to explore the
network to identify all such faulty nodes, called black holes. In this paper we

� Partially supported by the project ALPAGE of the ANR “Masse de données:
Modélisation, Simulation, Applications”, the project CEPAGE of INRIA, the EC
COST-TIST Action 293 “Graphs and Algorithms in Communication Networks”
(GRAAL) and Action 295 “Dynamic Communication Networks” (DYNAMO), and
the Royal Society IJP grant “Algorithms to find dense clusters in large networks”.

�� Partially supported by the UK EPSRC grant EP/D059372/1.

A. Shvartsman and P. Felber (Eds.): SIROCCO 2008, LNCS 5058, pp. 20–32, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Locating and Repairing Faults in a Network with Mobile Agents 21

consider a weaker type of faults: agents are able to repair them, but one agent
can repair only one faulty node. The task for a group of agents is now to explore
the network to repair all faulty nodes. In this section we first review the black
hole search model and introduce in more detail our repairable hole model. Then
we summarise our results and compare them with previous relevant results.

Black-hole faults. The black hole search problems have been motivated by
the following scenario. Mobile software agents can move through a network of
computers, but some hosts (black holes) terminate any agent visiting it. The
problem of protecting mobile agents from such malicious hosts has been studied
in [11,12,15,16], with the focus on protecting sensitive information which mobile
agents may carry.

From a more theoretical point of view, the researchers have investigated the
problem of agents co-operatively exploring the network to identify the locations
of black holes. Some of the agents might die, but the surving ones should learn
where the black holes are (to avoid them in the future). This proplem was initially
considered in the asynchronous model, and the majority of the results are for
this model. An efficient protocol for two agents locating one black hole in an
asynchronous ring network was presented in [6] and was extended to aribtrary
two-connected networks in [7]. In subsequent research special network topologies
were considered [4] and restrictions on communication between the agents were
investigated, replacing the initially used whiteboard model with communication
by means of a limited number of identical pebbles [5,8].

In the synchronous model, which we consider in this paper, the agents traverse
the network in globally timed steps. In each step each agent can performed (un-
limitted) local computation, which includes exchanging information with other
agents who are at the same step in the same node, and can then move to a neigh-
bouring node (or remain in the same node) [1,2,3,13,14]. Initially, all agents are
at the same start node s and know the topology of the whole network, but do
not know the number and the location of black holes. Also, no information about
black holes is available in the safe nodes of the network (the nodes which are
not black holes). Thus, in order to locate a black hole, at least one agent must
visit it, but an agent entering a black hole disappears completely. The agents can
communicate only when they meet, not being allowed to leave any messages in
any form at the nodes. An agent learns that a node v is not a black hole either by
visiting it (and surviving) or by meeting another agent who has already visited
that node (and survived). An agent may deduce that a node v is a black hole
if this agent is suppose to meet another agent, at some node other than v, but
that other agent does not show up. The objective is to design a communication
algorithm for the agents to identify all black holes reachable from the start node,
minimizing the loss of agents and the number of steps required.

Most of the research on the synchronous black hole search problems has
been concerned so far with the special case of two agents exploring a network
which may have at most one black hole. The problem is to compute an “ex-
ploration schedule” for the agents which has the minimum possible number of
steps. The first results regarding the computational hardness of this problem and

22 C. Cooper, R. Klasing, and T. Radzik

approximation algorithms were presented in [2,3] and were subsequently im-
proved in [13,14]. A more general case of locating black holes with k agents,
where k ≥ 2 is a parameter, was considered in [1]. The recent survey paper [9]
discusses both asynchronous and synchronous models, various variants of the
black hole search problem and solution techniques.

Repairable faults. In reality many types of faults can be fixed after some
amount of trying, and with the expenditure of some effort. Thus there is a
spectrum of problems with unfixable faults (black holes) at one end, and fixable
faults (holes) at the other. If faults can be fixed, then we have to decide what
is the appropriate way of modeling the cost of repairing a fault. For example,
an agent fixing a fault may not be able to do anything else: the fault has been
fixed but the agent has to be sacrificed. In other scenarios only the “content”
part of the agent (the “repair kit”) may have to be sacrificed to fix a fault, while
the “carrier” part can remain mobile and can communicate with other agents,
or can return to the starting node (the “depot”) to pick up another repair kit.

Scenarios when the agent is sacrificed include robots traveling a road network,
seeking to trigger land-mines, and software agents moving from node to node in a
computer network to repair faults. In the latter example, the software agent is ex-
ecutable by the runtime environment at a faulty node, fixing that fault but perma-
nently remaining at the node. A physical example where the contents of the agent
are consumed, but the carrier survives, is that of trucks with loads of gravel trav-
elling a road network in order to fill holes caused by, for example, flash flooding.

In this paper we consider the following synchronous model of repairable holes.
All agents are initially in the start (or source) node s and move through the net-
work synchronously, traversing one edge in one time step. If an agent encounters
a hole at a vertex v, it will sacrifice itself to repair it. After the repair, which
is completed instantenously, the node functions normally and other agents can
pass through it as if the fault never existed. The first agent encountering a given
hole must repair it. If two or more agents encounter the same hole at the same
time, one of them repairs it, while the other agents can continue with their ex-
ploration. Given a network (the whole topology is known in advance), node s
and k agents, the aim is to design an exploration algorithm, which repairs all
holes in the network within a small number of steps.

Our results. Since an exploration algorithm must ensure that each node is
visited by at least one agent, then Ω(n/k + D) is an obvious lower bound on
the required number of steps, where n and D are the number of nodes and
the diameter of the network, respectively. We show in Section 3 that a simple
algorithm completes exploration in O (n/k + D log f/ log log f) steps, where f =
min{n/k, n/D}, if there are at most k/2 holes. In Section 4 we prove that this
algorithm is asymptotically optimal in the worst case. We do this by showing a
tree network T (n, d) with Θ(n) nodes and diameter Θ(d), for any n ≥ d ≥ 1,
such that for any deterministic exploration algorithm, there is a placement of at
most k/2 holes in T (n, d), for any n ≥ k ≥ 2, which forces the algorithm to run
for Ω (n/k + d log f/ log log f) steps. The assumption that the number of holes
is at most k/2 and possible generalisations are discussed in Section 5.

Locating and Repairing Faults in a Network with Mobile Agents 23

The previous work which is most closely related to our results are the multi-
agent black-hole search algorithms which we gave in [1]. Our repairable-hole
model is stronger than the black-hole model, so multi-agent black-hole search
algorithms can be adapted to the repairable hole model in a natural way. The
two black-hole search algorithms from [1] adapted to the repairable-hole model
run in O((n/k) log n/ log log n+kD) and O(n/k+D

√
n) steps. No lower bounds

were given in [1] other than the obvious Ω(n/k + D).

2 Preliminaries

The input is an undirected graph G = (E, V) representing the network, a source
node s ∈ V and an integer k ≥ 2, which is the number of available agents. We
assume that n, the number of nodes in G, is sufficiently large, and the diameter of
G is D ≥ 5. The latter assumption can be dropped by replacing in the algorithm
and its analysis D with D̄ = max{D, 5}. We denote by b the (unknown) initial
number of holes and assume that b ≤ k/2.

A connected subgraph S of a tree T is called a subtree of T . If T is a rooted
tree, then a subtree S is rooted at the node of S closest to the root of T . The size
of a subtree S is defined as the number of nodes in S and is denoted by |S|. If T
is rooted, then for a node v in T , the subtree of T rooted at v is the subtree of
T spanning node v and all its decendants. During exploration of a network, the
active agents are the agents which are still alive, that is, the agents who have
not repaired any hole yet.

3 Exploration Algorithm

A natural approach to exploring a network with multiple agents is first to com-
pute a cover of the network with connected regions, and then to have separate
agents explore separate regions in parallel. Considering regions of size Θ(D)
seems to be a good idea since an agent may need anyway Θ(D) steps to reach a
region. We describe below a simple way of computing q = O(n/D) regions, each
of size O(D), which cover the whole network.

For the problem of exploring a network which does not have any faults/holes,
with the objective of having each node visited by at least one agent, such regions
are the basis of a simple, asymptotically optimal Θ(n/k + D)-steps algorithm.
If k < q, then each agent explores q/k = O(n/(kD)) regions and exploration
of one region takes O(D) time (that is, each agent explores O(n/k) nodes, and
whole exploration is completed in Θ(n/k) steps). If k ≥ q, then q agents explore
the q regions in parallel in Θ(D) steps. The other agents may remain idle since
this asymptotic bound cannot be improved.

Our algorithm, for our model where each agent can repair only one hole,
consists of a sequence of rounds, and each round is similar to the exploration
scheme sketched above. After each round, the active agents return to the start
node s and learn which regions may still contain (unrepaired) holes. These are
the regions from which no agent returned. In the next round, the active agents

24 C. Cooper, R. Klasing, and T. Radzik

are sent in equal size groups to explore these remaining regions in parallel. We
describe below the details of the algorithm and give in Theorem 1 a worst-case
bound on its running time (the number of steps).

Computation of regions. The algorithm first computes a breadth-first tree
T of G rooted at s. Then it computes subtrees S1, S2, . . . , Sq of tree T with the
following properties:

1. each subtree Si has size at most D;
2. subtrees S1, S2, . . . , Sq cover tree T , that is, each node of T belongs to at

least one subtree Si;
3. q = O(n/D).

These subtrees define the regions of the network and can be computed by the
following straightforward iterative process. Let T1 = T . At the beginning of
iteration i, i ≥ 1, tree T is covered by subtrees S1, . . . , Si−1 and Ti. The subtree
Ti is rooted at s and represents the remaining part of tree T which has yet to
be covered. If the size of Ti is at most D, then we set Si = Ti, q = i, and the
covering of T has been computed. Otherwise, when the size of Ti is greater than
D, let vi be a node in Ti such that the size of the subtree of Ti rooted at vi is
at least D but the size of each subtree of Ti rooted at a child of vi is less than
D. Let w1, w2, . . . , wj be the children of node vi ordered according to the sizes
of the subtrees of Ti rooted at these nodes, starting from the largest. Let r be
the first index such that the sum of the sizes of the subtrees rooted at nodes
w1, w2, . . . , wr is at least D/2. Set Si to the subtree of Ti comprising node vi

and the subtrees rooted at nodes w1, w2, . . . , wr. If Si includes all children of vi

in Ti (that is, if Si is the subtree of Ti rooted at vi), then tree Ti+1 is obtained
from Ti by cutting off subtree Si (observe that in this case vi cannot be the
root of Ti, so Ti+1 �= ∅). Otherwise, tree Ti+1 is obtained from Ti by cutting off
the subtrees rooted at nodes w1, w2, . . . , wr. Node vi and its subtrees rooted at
nodes wr+1, . . . , wj remain in Ti+1.

It should be clear that the subtrees S1, S2, . . . , Sq constructed in this way
satisfy Properties 1 and 2. If i ≤ q − 1, then Si has at least D/2 + 1 nodes. If
a node in T belongs to two different subtrees Sr and Sj, r �= j, then it must
be the root of at least one of them. Thus sets V (Si) \ {vi}, for i = 1, 2, . . . , q,
are pairwise disjoint and each of them other than the last one has at least D/2
nodes. This implies (D/2)(q − 1) < n, so q < (2n)/D + 1 and Property 3 is
satisfied as well.

Exploration. In our exploration algorithm, the agents move through the graph
only along the edges of tree T . The exploration consists of two phases, and each
of them consists of rounds. At the beginning of one round all active agents are
at the source node s. They are partitioned into groups and each group explores
during this round one of the active trees Si. Initially all trees Si are active. A
group of l agents explores a tree Si by first walking together along the path in
T from s to the root of Si, then fully traversing Si in O(|Si|) steps (say, by
following an Euler tour around tree Si, which passes twice along each edge of

Locating and Repairing Faults in a Network with Mobile Agents 25

Si), and finally walking back to s. All agents in one group keep moving together
from node to node. If they encounter a hole which has not been repaired yet
(either on the path from s to the root of Si or within Si), then one of them
repairs it, while the other agents move on. If two or more groups meet at a hole,
then one agent from one group (an arbitrary agent from an arbitrary group)
repairs it.

If at least one agent from the group exploring tree Si returns back to s, then
all holes in Si and on the path in T from s to Si have been repaired, and tree Si

is no longer active. If no agent from this group returns to s, then tree Si remains
active, but we know that at least l additional holes must have been repaired.

During phase 1 of the algorithm, each tree Si is explored with only one agent
(single-agent groups). More specifically, in round 1 of phase 1, the k agents
explore in parallel trees S1, S2, . . . Sk, one agent per tree. In round 2, the k′ ≤ k
agents active at the beginning of this round explore in parallel the next k′ trees
Sk+1, Sk+2, . . . , Sk+k′ , and so on, until each tree has been explored once. If k ≥ q,
then there is only one round in phase 1. At the end of phase 1, there are at most
b remaining active trees, because for each of these trees at least one hole must
have been repaired (either in this tree or on the path from s to this tree).

We now describe phase 2 of the exploration. Let kj , mj and bj denote the
number of active agents, the number of active trees and the (unknown) number
of remaining holes, respectively, at the beginning of round j, j ≥ 1. During round
j, the kj active agents are partitioned into groups of size �kj/mj	 (some active
agents may be left idle, if kj/mj is not an integer), and the groups explore in
parallel the remaining mj active trees, one group per tree. If a tree Si remains
active at the end of this round, then each of the �kj/mj	 agents assigned to this
tree must have repaired one hole. Thus at least mj+1�kj/mj	 additional holes
are repaired during round j. The exploration ends when no active tree is left.

Theorem 1. Assuming k ≥ 2b, the exploration algorithm runs in

O

(
n

k
+ D

log f

log log f

)
(1)

steps, where f = min{n/k, n/D}.

Proof. Each round consists of O(D+max{|Si|}) = O(D) steps. The assumption
that k ≥ 2b implies that there are always at least k/2 active agents. Thus
during phase 1, at least k/2 new trees are explored in each round other than the
last one. Therefore the number of rounds in phase 1 is at most q/(k/2) + 1 =
O(1 + n/(kD)).

Now we bound the number of rounds in phase 2 using numbers kj , mj and bj

introduced above. Consider any round j other than the last one (mj+1 ≥ 1). In
this round at least mj+1�kj/mj	 additional holes are repaired, so we have

bj+1 ≤ bj − mj+1

⌊
kj

mj

⌋
≤ bj − mj+1

mj

kj

2
≤ bj − mj+1

mj

k

4
. (2)

26 C. Cooper, R. Klasing, and T. Radzik

The second inequality above holds because kj ≥ mj (we have mj ≤ m1 ≤ b ≤
k/2 ≤ kj). The third inequality holds because kj ≥ k/2. Using (2) we get

0 ≤ bj+1 ≤ b1 − k

4

(
m2

m1
+

m3

m2
+ · · · +

mj+1

mj

)

≤ b1 − jk

4

(
mj+1

m1

)1/j

≤ k

2
− jk

4

(
mj+1

m1

)1/j

. (3)

The third inequality above holds because the geometric mean (mj+1/m1)1/j of
numbers mi+1/mi, i = 1, 2, . . . , j, is not greater than their arithmetic mean.
Inequality (3) implies

m1

mj+1
≥

(
j

2

)j

. (4)

We have

m1 ≤ q ≤ 4n

D
. (5)

Let round j + 2 be the last one. We have mj+1 ≥ mj+2 ≥ 1. It also must hold
that kj+1/mj+1 ≤ 2D, or otherwise round j + 1 would be the last one. Indeed,
if kj+1/mj+1 > 2D, then each tree Si active at the beginning of round j + 1
would be explored during this round with �kj+1/mj+1	 ≥ 2D ≥ |Si|+D agents,
so all holes in Si and on the path from s to Si would be repaired in this round.
Therefore,

mj+1 ≥ max
{

1,
kj+1

2D

}
≥ max

{
1,

k

4D

}
. (6)

Inequalities (5) and (6) imply

m1

mj+1
≤ 4n/D

max {1, k/(4D)} ≤ 16
n

max{k, D} = 16 min
{n

k
,

n

D

}
≤ 16f. (7)

Inequalities (4) and (7) imply

(
j

2

)j

≤ 16f,

so

j = O

(
log f

log log f

)
.

Thus the total number of steps throughout the whole exploration algorithm is
O(D(n/(kD) + j)), which is the bound (1). �

Locating and Repairing Faults in a Network with Mobile Agents 27

4 Lower Bound

For positive integers n ≥ d ≥ 1, we define T (n, d) as the tree which is rooted
at node s and has the following �n/d	 subtrees. Each subtree of the root is
a d-node path with d leaf nodes attached to its end. Thus tree T (n, d) has
1 + 2d�n/d	 = Θ(n) nodes and diameter Θ(d).

We show that for any (deterministic) exploration algorithm for this tree net-
work, we (as the adversary) can place holes in such a way that the agents will
be forced to go up and down the tree Ω(log f/ log log f) times. To decide where
holes should be placed, we keep watching the movement of the agents and de-
cide not to put any additional holes in the subtrees of T (n, d) where currently
relatively many agents are. These agents will have to go back up to the root
of T (n, d) and then down into other subtrees, where relatively few agents have
gone before, to look for further holes.

Theorem 2. For integers n ≥ d ≥ 1 and n ≥ k ≥ 2, and any algorithm
exploring tree T = T (n, d) with k agents starting from the root, there exists a
placement of b ≤ k/2 holes in T which forces the algorithm to run in

Ω

(
n

k
+ d

log f

log log f

)
. (8)

steps, where f = min{n/k, n/d}.

Proof. Let A be any algorithm exploring tree T = T (n, d) with k agents, and let

α = max
{
i – positive integer: ii ≤ f

}
. (9)

We have

α = Θ

(
log f

log log f

)
,

and we assume in our calculations that f is sufficiently large, so that α ≥ 4.
Since for any exploration algorithm and for any network the number of steps
must be Ω(n/k), it suffices to show that algorithm A requires in the worst case
Ω(d log f/(log log f)) steps.

We place the holes only at leaves of T . We simulate algorithm A to decide
which subtrees get how many holes. We look at intervals of d consecutive steps
and call them rounds of the exploration. We will place the holes in such a way
that the algorithm needs at least α rounds to complete the exploration.

We look first at round 1, and observe that the way the agents move during this
round is independent of the distribution of holes in the leaves. This is because
no agent can reach further than distance d from the root, so cannot reach any
leaf of T . Let n0 = �n/d	 and let S(0) be the set of the n0 subtrees of the root s

in T . We sort these subtrees into the ascending sequence S
(0)
1 , ..., S

(0)
n0 , according

to the number of agents in the subtrees at the end of the round. We take the
n1 = �n0/α	 lowest subtrees in this order to form the set S(1) (where α is given
in (9)). We decide that there are no holes in the subtrees in S(0) \ S(1), that is,

28 C. Cooper, R. Klasing, and T. Radzik

all holes are in the subtrees in S(1). Informally, if many agents have gone into
a subtree, then we decide not to put any holes in this subtree (this would be a
subtree in S(0) \ S(1)). Instead we will be putting holes in the subtrees where
relatively few agents have gone (the subtrees in S(1)).

Now we observe what the algorithm does during round 2. Note that at the
beginning of this round, there must be a subtree in S(0) \ S(1) with at most
�k/(n0 − n1)	 agents, so each subtree in S(1) has at most �k/(n0 − n1)	 agents.
Whenever an agent visits during this round a new leaf of a subtree in S(1) (not
visited before by any agent), we place a hole there. Only the agents which are in
a subtree at the beginning of a round can explore a leaf of this subtree during
this round. Thus at the end of round 2, in each subtree in S(1), all but at most

⌊
k

n0 − n1

⌋

leaves are still unexplored. We sort the subtrees in S(1) into the ascending se-
quence S

(1)
1 , ..., S

(1)
n1 , according to the number of agents in the subtrees at the

end of the round, and we take the n2 = �n1/α	 lowest subtrees in this order to
form the set S(2). We decide not to put more holes in the subtrees in S(1) \S(2),
that is, all additional holes will be placed in the subtrees in S(2).

We now generalise round 2 into a round i ≥ 2. At the beginning of this round,
we have (by induction) a set S(i−1) of ni−1 subtrees of the root of T such that
each of these subtrees has at most �k/(ni−2 − ni−1)	 agents. We have already
placed holes at some leaves of T in previous rounds. We will not put more holes
at leaves of the subtrees in S(0) \ S(i−1), but we may put additional holes in
subtrees in S(i−1). We observe how the agents explore tree T during this round,
and whenever an agent visits a new leaf of a subtree in S(i−1) (not visited before
by any agent), we place a hole there. Only the agents which are in a subtree at
the beginning of a round can explore a leaf of this subtree during this round.
Thus at the end of round i, in each subtree in S(i−1), all but at most

⌊
k

n0 − n1

⌋
+

⌊
k

n1 − n2

⌋
+ · · · +

⌊
k

ni−2 − ni−1

⌋
(10)

leaves are still unexplored, and the number of holes we have placed in the network
so far is at most

n1

⌊
k

n0 − n1

⌋
+ n2

⌊
k

n1 − n2

⌋
+ · · · + ni−1

⌊
k

ni−2 − ni−1

⌋
(11)

We sort the subtrees in S(i−1) into the ascending sequence S
(i−1)
1 , ..., S

(i−1)
ni−1 ,

according to the number of agents in the subtrees at the end of round i, and take
the ni = �ni−1/α	 lowest subtrees in this order to form the set S(i). We decide
not to put more holes in the subtrees in S(i−1) \S(i), that is, all additional holes
will be placed in the subtrees in S(i). At the end of the round there must be a
subtree in S(i−1) \ S(i) with at most �k/(ni−1 − ni)	 agents, so each subtree in
S(i) has at most �k/(ni−1 − ni)	 agents.

Locating and Repairing Faults in a Network with Mobile Agents 29

Round i is not the last one, if the following three conditions hold.

1. ni ≥ 1 (that is, there is at least one subtree in the set S(i)).
2. The upper bound (10) on the number of explored nodes in a subtree in S(i)

at the end of round i is less than d, the number of leaves in one subtree.
3. The upper bound (11) on the number of holes placed in the network by the

end of round i is less than k/2.

We show that the above three conditions hold for i = α/4, assuming for
convenience that α/4 is integral. We have n0 = �n/d	 ≥ f ≥ αα, and for
i = 0, 1, . . . , α,

ni = �ni−1/α	, (12)

so
ni ≥ αα−i. (13)

In particular, nα−1 ≥ α ≥ 1. Thus Condition 1 holds for i = α − 1, so must also
hold for i = α/4.

Now we bound (10) for i = α − 1:
⌊

k

n0 − n1

⌋
+

⌊
k

n1 − n2

⌋
+ · · · +

⌊
k

nα−3 − nα−2

⌋

≤ 2k

n0
+

2k

n1
+ · · · +

2k

nα−3

≤ 2k

nα−3

(
1

αα−3 +
1

αα−4 + · · · + 1
)

≤ 4k

nα−3
. (14)

The first inequality above holds because ni ≤ ni−1/α ≤ ni−1/2, (α ≥ 4). The
second inequality holds because ni+j ≤ ni/αj , so ni ≥ nα−3α

α−3−i. If k ≤ d,
then we continue (14) in the following way:

4k

nα−3
≤ 4d

α3 < d,

where the first inequality follows from (13) and the second one from the assump-
tion that α ≥ 4. If k > d, then αα ≤ �f	 = �n/k	, so

n0 =
⌊n

d

⌋
≥

⌊
k

d

⌋⌊n

k

⌋
≥

⌊
k

d

⌋
αα,

and (13) becomes

ni ≥
⌊

k

d

⌋
αα−i. (15)

Thus in this case we can continue (14) in the following way:

4k

nα−3
≤ 4k

�k/d	α3 ≤ 8d

α3 < d,

30 C. Cooper, R. Klasing, and T. Radzik

where the last inequality follows from α ≥ 4. Since in both cases the bound (10)
is less than d for i = α − 1, then Condition 2 holds for i = α − 1, so it must also
hold for i = α/4.

Now we bound (11) for i = α/4:

n1

⌊
k

n0 − n1

⌋
+ n2

⌊
k

n1 − n2

⌋
+ · · · + ni−1

⌊
k

ni−2 − ni−1

⌋

≤ k

n0/n1 − 1
+

k

n1/n2 − 1
+ · · · +

k

ni−2/ni−1 − 1

≤ α

4
· k

α − 1
<

k

2

The second inequality above follows from (12) and the fact that we consider
i = α/4. Thus also Condition 3 holds for i = α/4.

We conclue that algorithm A requires in the worst case dα/4 =
Ω(d log f/(log log f)) steps. �

5 Conclusions

We have introduced a variation of the black hole search model by enabling the
agents to repair the faulty nodes. We have shown matching worst-case upper
and lower bounds on the running time of a k-agent exploration algorithm in this
new model. These bounds imply that the trivial lower bound of Ω(n/k + D) is
not always tight.

Our arguments assume that the number of holes b is at most k/2. This as-
sumption can be weakened to b ≤ ck for an arbitrary constant c < 1 without
affecting the asymptotic bounds given in Theorems 1 and 2. To repair all holes
and to have at least one agent left at the end of the exploration, we only need to
assume that b ≤ k − 1. An adaptation of our upper and lower bound arguments
to this general case would change the bounds by replacing n/k with n/(k − b).

Our algorithm is worst-case asymptotically optimal. If we view it as an ap-
proximation algorithm, then its ratio bound is O(log f/ log log f) and it can be
shown that it is not constant. An interesting question is whether one can find a
better approximation algorithm. The problem of designing a k-agent exploration
with the minimum number of steps for the special case when there are no faults
(or when each agent can repair any number of faults) is equivalent to the follow-
ing k-TSP problem. Find k cycles which cover all nodes of a given undirected
graph, minimising the length of the longest cycle. A (5/2 − 1/k)-approximation
algorithm for this problem is shown in [10]. It is not clear, however, whether
this or other approximation algorithms for the k-TSP problem could be used
effectively in our model, when there may be many faults and agents die after
repairing one fault.

Most of the work on the synchronous black hole search problems, and this
paper as well, assume that the topology of the whole network is known in advance
and only the locations of faults are unknown. An interesting direction for further

Locating and Repairing Faults in a Network with Mobile Agents 31

research is to consider the case when the topology of the network is not known
or only partially known.

References

1. Cooper, C., Klasing, R., Radzik, T.: Searching for black-hole faults in a network
using multiple agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS,
vol. 4305, pp. 320–332. Springer, Heidelberg (2006)

2. Czyzowicz, J., Kowalski, D.R., Markou, E., Pelc, A.: Searching for a black hole in
tree networks. In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 67–80.
Springer, Heidelberg (2005)

3. Czyzowicz, J., Kowalski, D., Markou, E., Pelc, A.: Complexity of searching for a
black hole. Fundamenta Informaticae 71(2-3), 229–242 (2006)

4. Dobrev, S., Flocchini, P., Kralovic, R., Ruzicka, P., Prencipe, G., Santoro, N.: Black
hole search in common interconnection networks. Networks 47(2), 61–71 (2006);
(Preliminary version: Black hole search by mobile agents in hypercubes and related
networks. In: Proceedings of the 6th International Conference on Principles of
Distributed Systems, OPODIS 2002, pp. 169–180 (2002))

5. Dobrev, S., Flocchini, P., Kralovic, R., Santoro, N.: Exploring an unknown graph
to locate a black hole using tokens. In: Navarro, G., Bertossi, L., Kohayakwa,
Y. (eds.) Fourth IFIP International Conference on Theoretical Computer Science,
TCS 2006. IFIP International Federation for Information Processing, vol. 209, pp.
131–150. Springer, Heidelberg (2006)

6. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole
in an anonymous ring. Algorithmica 48(1), 67–90 (2007); (Preliminary version in:
Distributed Computing. In: 15th International Conference, DISC 2001, Proceed-
ings. LNCS, vol. 2180, pp. 166-179. Springer, Heidelberg (2001)

7. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole in ar-
bitrary networks: Optimal mobile agents protocols. Distributed Computing 19(1),
1–18 (2006); (Preliminary version in: Proceedings of the 21st ACM Symposium on
Principles of Distributed Computing, PODC 2002, pp. 153-161. ACM, New York
(2002)

8. Dobrev, S., Kralovic, R., Santoro, N., Shi, W.: Black hole search in asynchronous
rings using tokens. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC
2006. LNCS, vol. 3998, pp. 139–150. Springer, Heidelberg (2006)

9. Flocchini, P., Santoro, N.: Distributed security algorithms by mobile agents. In:
Chaudhuri, S., Das, S.R., Paul, H.S., Tirthapura, S. (eds.) ICDCN 2006. LNCS,
vol. 4308, pp. 1–14. Springer, Heidelberg (2006)

10. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some
routing problems. SIAM J. Comput. 7(2), 178–193 (1978)

11. Hohl, F.: Time limited blackbox security: Protecting mobile agents from malicious
hosts. In: Vigna, G. (ed.) Mobile Agents and Security. LNCS, vol. 1419, pp. 92–113.
Springer, Heidelberg (1998)

12. Hohl, F.: A framework to protect mobile agents by using reference states. In: Pro-
ceedings of the 20th International Conference on Distributed Computing Systems,
ICDCS 2000, pp. 410–417. IEEE Computer Society, Los Alamitos (2000)

13. Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Approximation bounds for black
hole search problems. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.)
OPODIS 2005. LNCS, vol. 3974. Springer, Heidelberg (2006)

32 C. Cooper, R. Klasing, and T. Radzik

14. Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Hardness and approximation
results for black hole search in arbitrary networks. Theor. Comput. Sci. 384(2-3),
201–221 (2007); (Preliminary version in: Structural Information and Communica-
tion Complexity. In: 12th International Colloquium, SIROCCO 2005, Proceedings.
LNCS, vol. 3499, pp. 200–215. Springer, Heidelberg (2005)

15. Ng, S.K., Cheung, K.W.: Protecting mobile agents against malicious hosts by inten-
tion spreading. In: Arabnia, H.R. (ed.) Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and Applications, PDPTA 1999.
CSREA Press, pp. 725–729 (1999)

16. Sander, T., Tschudin, C.: Protecting mobile agents against malicious hosts. In:
Vigna, G. (ed.) Mobile Agents and Security. LNCS, vol. 1419, pp. 44–60. Springer,
Heidelberg (1998)

Remembering without Memory:

Tree Exploration
by Asynchronous Oblivious Robots

Paola Flocchini1,�, David Ilcinkas2,��, Andrzej Pelc3,�, and Nicola Santoro4,�

1 University of Ottawa, Canada
flocchin@site.uottawa.ca

2 CNRS, Université Bordeaux I, France
david.ilcinkas@labri.fr

3 Université du Québec en Outaouais, Canada
pelc@uqo.ca

4 Carleton University, Canada
santoro@scs.carleton.ca

Abstract. In the effort to understand the algorithmic limitations of
computing by a swarm of robots, the research has focused on the mini-
mal capabilities that allow a problem to be solved. The weakest of the
commonly used models is Asynch where the autonomous mobile robots,
endowed with visibility sensors (but otherwise unable to communicate),
operate in Look-Compute-Move cycles performed asynchronously for
each robot. The robots are often assumed (or required to be) oblivi-
ous: they keep no memory of observations and computations made in
previous cycles.

We consider the setting when the robots are dispersed in an anony-
mous and unlabeled graph, and they must perform the very basic task
of exploration: within finite time every node must be visited by at least
one robot and the robots must enter a quiescent state. The complex-
ity measure of a solution is the number of robots used to perform the
task.

We study the case when the graph is an arbitrary tree and establish
some unexpected results. We first prove that there are n-node trees where
Ω(n) robots are necessary; this holds even if the maximum degree is
4. On the other hand, we show that if the maximum degree is 3, it is
possible to explore with only O(log n

log log n
) robots. The proof of the result is

constructive. Finally, we prove that the size of the team is asymptotically
optimal: we show that there are trees of degree 3 whose exploration
requires Ω(log n

log log n
) robots.

� Partially supported by NSERC. Andrzej Pelc is also partially supported by the
Research Chair in Distributed Computing at the Université du Québec en Outaouais.

�� This work was done during the stay of David Ilcinkas at the Research Chair in Dis-
tributed Computing of the Université du Québec en Outaouais and at the University
of Ottawa, as a postdoctoral fellow.

A. Shvartsman and P. Felber (Eds.): SIROCCO 2008, LNCS 5058, pp. 33–47, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

34 P. Flocchini et al.

1 Introduction

An important goal of theoretical research on computing by autonomous mo-
bile robots has been to understand the algorithmic limitations of computing
in such settings. The research has thus focused on the minimal capabilities
that allow a problem to be solved by a swarm of robots. In the investigations,
three models are commonly used: Synch, SSynch, and ASynch; the fully syn-
chronous model Synch being the strongest, the asynchronous model ASynch

being the weakest, the semi-synchronous model SSynch lying in between (see,
e.g., [2,3,4,5,9,13,14,15,16]).

In ASynch the autonomous mobile robots are endowed with visibility sensors
(but otherwise unable to communicate), are anonymous, are oblivious, and op-
erate in asynchronous Look-Compute-Move cycles. In one cycle, a robot uses its
sensors to obtain a snapshot of the current configuration (Look); then, based on
the perceived configuration, it computes a destination (Compute), and moves
there (Move); if the destination is the current position, the robot is said to
perform a null move. Cycles are performed asynchronously for each robot; this
means that, even if the operations are instantaneous, the time between Look,
Compute, and Move operations is finite but unbounded, and is decided by the
adversary for each action of each robot. The robots are oblivious: they keep no
memory of observations and computations made in previous cycles. All robots
are identical and execute the same algorithm. It is usually assumed that robots
are capable of multiplicity detection: during a Look operation, a robot can de-
termine if at some location there are no robots, there is one robot, or there are
more than one robots; however, in the latter case, the robot might not be capable
of determining the exact number of robots.

The asynchrony implies that a robot R may observe the position of the robots
at some time t; based on that observation, it may compute the destination at
some time t′ > t, and Move to its destination at an even later time t′′ > t′; thus it
might be possible that at time t′′ some robots are in different positions from those
previously perceived by R at time t, because in the meantime they performed
their Move operations (possibly several times). Since robots are oblivious, i.e.,
they do not have any memory of past observations, the destination is decided by
a robot during a Compute operation solely on the basis of the location of other
robots perceived in the previous Look operation.

In the literature, the Asynch model is used by researchers in the study of the
coordination and control of autonomous mobile robots in the two-dimensional
plane, which we shall term the continuous scenario. The computational capabili-
ties of these robots when the spacial universe is a network or a graph, a scenario
that we shall term discrete, has been recently investigated in [8,11], where the
graph is a ring. In the discrete scenario, the computed destination in each cycle
is either the node where the robot is currently situated or a node adjacent to it.

An important feature of the discrete scenario is the fact that the graph is
totally anonymous: not only nodes but also edges are unlabeled, and there are
no port numbers at nodes. This gives additional power to the adversary at the
time when a robot must move. Indeed, it may happen that two or more edges

Remembering without Memory: Tree Exploration 35

incident to a node v currently occupied by the deciding robot look identical in the
snapshot obtained during the last Look action , i.e., there is an automorphism
of the tree which fixes v, carries empty nodes to empty nodes, occupied nodes to
occupied nodes, and multiplicities to multiplicities, and carries one edge to the
other. In this case, if the robot decides to take one of the ports corresponding
to these edges, it may take any of the identically looking ports. We assume the
worst-case decision in such cases, i.e., that the actual port among the identically
looking ones is chosen by an adversary. This is a natural worst-case assumption
and our algorithm is also resistant to such adversarial decisions.

We continue the study of computational capabilities of robots under the dis-
crete scenario by considering the very basic task of exploration: within finite time
every node must be visited by at least one robot and the robots must enter a
quiescent state. The complexity measure of a solution is the number of robots
used to perform the task. The problem of exploring a graph has been extensively
studied in the literature under a variety of assumptions (e.g. see [1,6,7,10,12])
but not in the setting considered here. The only exception is [8] where we proved
that the minimum number ρ(n) of robots that can explore a ring of size n is
O(log n) and that ρ(n) = Ω(log n) for arbitrarily large n.

In this paper we consider the case when the graph is an arbitrary tree and
establish some unexpected results. We first prove that, in general, exploration
cannot be done efficiently. More precisely we prove that there are n-node trees
where Ω(n) robots are necessary; this holds even if the maximum degree is 4.
We then prove the existence of a complexity gap. We show that if the maximum
degree of the tree is 3 then it is possible to explore it with only O(log n

log log n) robots.
The proof of the result is constructive. Finally, we show that the size of the team
used in our solution is asymptotically optimal: there are trees of degree 3, whose
exploration requires Ω(log n

log log n) robots.
Due to space limitations, the proofs are omitted.

2 Terminology and Preliminaries

We consider a n-node anonymous unoriented tree. Some nodes of the tree are oc-
cupied by robots. We will always assume that in an initial configuration of robots
there is at most one robot in each node. The number of robots is denoted by k.
A complete d-ary tree is a rooted tree, all of whose internal nodes have d children
and all of whose leaves are at the same distance from the root. Nodes v and w are
similar if there exists an automorphism of the tree T which carries v to w.

In order to formally define what a robot perceives during a Look action, we
introduce the notion of the view of a rooted tree T occupied by robots, from its
root v. This is defined by induction on the height of the tree T . If T consists
only of v then V iew(T, v) = (x, ∅), where x = 0, x = 1, or x = ∗, if there is 0, 1,
or more than 1 robot in v, respectively. If T is of positive height, let v1, . . . , vm

be children of the root v, and let T1, . . . , Tm be subtrees rooted at v1, . . . , vm,
respectively . Then V iew(T, v) = (x, {V iew(T1, v1), . . . , V iew(Tm, vm)}), where
x has the same meaning as before. Now, the snapshot taken by a robot located

36 P. Flocchini et al.

at v is simply V iew(T, v). This formalism captures two essential assumptions
about the perceptions of robots. First, a robot can distinguish between nodes
occupied by 0, 1, or more than 1 robot, but cannot distinguish between numbers
larger than 1 of robots located at the same node. Second, subtrees rooted at
children of a node are not ordered: this is captured by considering the set of
respective views, and not their sequence, in the recursive definition.

Two robots located at nodes v and w are called equivalent, if V iew(T, v) =
V iew(T, w). A node that is not occupied by any robot is called empty. When a
node is occupied by more than one robot, we say that there is a tower in this
node. A robot that is not a part of a tower is called free.

An exploration algorithm is a function whose arguments are views, and whose
value for any given view V iew(T, v) is either v or the equivalence class of one of
its neighbors, with respect to the following equivalence relation ∼: w1 ∼ w2 if
there exists an automorphism f of the tree which fixes v, carries empty nodes
to empty nodes, free robots to free robots, towers to towers, and such that
f(w1) = w2. Note that w1 ∼ w2 is equivalent to V iew(T, w1) = V iew(T, w2).
If the equivalence class returned by the algorithm for some view has more than
one element then the choice of the neighbor in this class to which the robot will
actually move, belongs to the adversary. If the value is v, we say that the move
of the robot for the given view is the null move.

We say that exploration of a n-node tree is possible with k robots, if there
exists an algorithm which, starting from any initial configuration of k robots
without towers, and for any behavior of the adversary controling asynchrony
and choices between equivalent neighbors, explores the entire tree and brings all
robots to a configuration in which they all remain idle, i.e., there exists a time
t after which all nodes are explored and all subsequent moves of robots are null
moves. In fact, our negative results hold even for this weak (implicit) stopping
condition, and our positive results (algorithms) are valid even with the following
stronger (explicit) stopping condition: for any execution of the algorithm, there
exists a time t after which all nodes are explored, and each robot knows that no
non-null move of any robot (including itself) will ever occur. Obviously, if k = n,
the exploration is already accomplished, hence we always assume that k < n.

3 Exploration of Trees

In this section we prove that, in general, exploration of n-node trees might require
Ω(n) robots (even if the max degree is 4); we prove that, on the other hand, the
minimum number of robots sufficient to explore all n-node trees of maximum
degree 3 is Θ(log n

log log n).

3.1 Exploration of Arbitrary Trees

We show that there are arbitrarily large trees of maximum degree 4 whose ex-
ploration requires Ω(n) robots.

Theorem 1. Exploration of a n-node complete 3-ary tree requires Ω(n) robots.

Remembering without Memory: Tree Exploration 37

3.2 Exploration of Trees of Maximum Degree 3: Upper Bound

We prove the following upper bound on the size of the team of robots capable
to explore all n-node trees of maximum degree 3.

Main Theorem. There exists a team of O(log n
log log n) robots that can explore all

n-node trees of maximum degree 3, starting from any initial configuration.

This result is proved by showing an exploration algorithm using O(log n
log log n)

robots.

Overview of the Algorithm. The main idea of the algorithm is the following.
The entire tree is partitioned into two or three subtrees, the number of parts
depending on the shape of the tree. Parts are explored one after another by a
team of three robots that sequentially visit leaves of this part. Since individual
robots do not have memory, a specially constructed, dynamic configuration of
robots, called the “brain”, keeps track of what has been done so far. More pre-
cisely, the brain counts the number of already visited leaves and indicates the
next leaf to be visited. It is also the brain that requires most of the robots used
in the exploration process. The reason why Θ(log n/ log log n) robots are suffi-
cient for exploration, is that the counting process is efficiently organized. The
counting module of the brain consists of disjoint paths of logarithmic lengths,
which are appropriately marked by groups of robots of bounded size. Paths are
of logarithmic lengths because longer paths cannot be guaranteed to exist in all
trees of maximum degree 3. Inside each of these paths a tower moves, indicating
a numerical value by its position in the path. The combination of these values
yields the current value of the number of visited leaves. Since the number of
leaves may be Θ(n), we need a number x of paths, which can produce Θ(n)
combinations of values, i.e., such that (Θ(log n))x = Θ(n). This is the reason of
constructing Θ(log n/ log log n) paths and thus using Θ(log n/ log log n) robots.
We show how to construct these paths in any tree of maximum degree 3, and
how to organize the counting process. The latter is complicated by the asyn-
chronous behavior of the robots. During the switch of the counter from value i
to i + 1 robots move in the paths and a snapshot taken during the transition
period shows a “blurred” picture: the old value is already destroyed while the
new one is not yet created. This could confuse the robots and disorganize the
process. Thus we use two counters acting together. They both indicate value i,
then one of them keeps this value and the other transits to i + 1. When this is
completed, the first counter transits to i + 1 and so on. This precaution permits
to keep track of the current value during the process of incrementation. During
the exploration of one part of the tree, the brain is located in another part and
controls exploration remotely. After completing the exploration of one part, the
brain is moved to the already explored part in order to let the exploring agents
visit the rest of the tree.

There are two main difficulties in our algorithm. The first is to break symme-
tries that can exist in configurations of robots, in order to let them act indepen-
dently and reach appropriate target nodes, in particular during the construction

38 P. Flocchini et al.

of the brain. The second challenge is the construction and relocation of the brain,
as well as organizing its proper functioning by coordinating the two counters,
regardless of the behavior of the adversary that controls asynchrony.

The algorithm is divided into the following phases. Phase 1 consists in moving
all robots down the tree oriented in a specific way, without creating a tower, in
order to create a large zone free of robots. When no robot can move further
down, a tower is created to mark the end of Phase 1. In Phase 2, robots are
moved from one part of the tree and create the brain in another part. If there
are local symmetries, a leader is elected and breaks them by relocating to specific
nodes of the tree. This is done to let the robots move independently from one
part of the tree to another and occupy target positions. As a consequence, one
part becomes almost empty, which facilitates its exploration. Phase 2 ends when
the brain is at its place, properly initialized, and there remain only a tower and
a free robot in the other part, that will explore this part. Phase 3 is the actual
exploration of the part not containing the brain (or the larger of the two parts
not containing the brain). This is done by visiting its leaves, one similarity class
after another. Inside a similarity class, leaves are explored in a DFS manner,
the brain keeping track of the progress of exploration. This phase ends when
the brain indicates that the exploring robots are at the last leaf of the explored
part. In Phase 4 the brain is relocated to the already explored part, and the
exploring robots move to one of the unexplored parts. Again, Phase 4 ends when
all robots are in their places and the brain is properly reinitialized (with the
indication that one part is already explored). Finally, in the remaining phases
the rest of the tree is explored, similarly as in Phase 3. There is a mechanism in
the algorithm that enables robots to see what is the current phase, in order to
avoid circular behavior. This is implemented by a special arrangement of robots,
called signal, whose value increments from phase to phase.

Tools and Basic Properties. Before giving a detailed description of the algo-
rithm we present some concepts that we will use in this description, and prove
their basic properties. Let T be a n-node tree of maximum degree 3. Consider a
team of k robots, where c log n/ log log n ≤ k ≤ 2c logn/ log log n, for an appro-
priately chosen constant c, and k ≡ 5 (mod 6). The conditions on the constant
c are explicitly given after the description of the algorithm.

Pieces
For each internal node v, consider the number of nodes in each of the subtrees
rooted at neighbors of v, and let nv be the maximum of these numbers. It is
well known that either there exists exactly one node v for which nv ≤ (n − 1)/2
(the centroid), or there is exactly one edge {v, w}, for which nv = nw = n/2
(the bicentroid). In each case we consider the oriented tree from the centroid or
bicentroid down to the leaves. We will say that the tree is rooted in the centroid
or bicentroid and use the usual notions of parent and children of a node.

Next we define the subtrees of T , called its pieces. If T has a centroid of
degree 2 then there are two pieces T1 and T2 which are rooted at children of
the centroid. If T has a centroid of degree 3 then there are three pieces T1,
T2 and T3 which are rooted at children of the centroid. Finally, if T has a

Remembering without Memory: Tree Exploration 39

bicentroid then there are two pieces T1 and T2 which are rooted at nodes of the
bicentroid. Without loss of generality we assume that sizes of T1, T2 and T3 are
non-increasing. Hence (n − 1)/3 ≤ |T1| ≤ n/2 and n/4 ≤ |T2| ≤ n/2. For every
piece, we define its weight as the number of robots located in it. Thus we talk
about the heaviest piece, a heavier piece, etc. A piece Ti is called unique if there
is no other piece whose root has the same view as the root of Ti.

Core Zone
A node in a piece is a core node, if the size of the subtree rooted at this node
is larger than the size k of the entire team of robots. The set of core nodes in a
piece is called the core zone of the piece.

Lemma 1. In any rooted tree of size x and such that every internal node has
at most two children, the size of the core zone is at least x+1

k+1 − 1.

Since the size of any of the two largest pieces is at least n/4, Lemma 1 implies
that the size of the core zone of any of these pieces is at least n log log n

10c log n .

Descending Paths
The basic component of the brain is a descending path. This is a simple path in a
piece Q, whose one extremity is its node closest to the root of Q. It will be called
the beginning of the path. The other extremity will be called its end. The size
of such a path is the number of its nodes. We need sufficiently many pairwise
disjoint descending paths, each sufficiently long, for all parts of the brain. The
construction is a part of the proof of the following lemma.

Lemma 2. For any sufficiently large m, every tree of maximum degree 3 and of
size m contains at least log2 m pairwise disjoint descending paths of size at least
1
4 log m.

The core zone is a tree of maximum degree 3, rooted in the root of the piece and
has size m ≥ n log log n

10c log n . Hence, for sufficiently large n, Lemma 2 guarantees the ex-
istence of at least log2 m ≥ log n ≥ 5 logn/ log log n pairwise disjoint descending
paths of size at least 1

4 log m ≥ 1
8 log n in any of the two largest pieces.

Modules of the Brain
The brain consists of four parts: two counters, the semaphore and the garbage.
Descending paths forming these parts will be situated in the core zone of a piece,
each of the paths at distance at least 3 from the others, in order to allow correct
pairing of beginnings and ends.

We now describe the structure of a counter. This is a collection of q ∈
Θ(log n

log log n) pairwise disjoint descending paths, of sizes L + 1, L + 2, . . . L + q,
where L ∈ Θ(log n). We take paths of different lengths in order to easily distin-
guish them. Nodes of the ith path are numbered 1 to L+ i (where 1 corresponds
to the beginning). Two towers will be placed in the first and third nodes of each
path, thus marking its beginning. Similarly, three towers will be placed at the
end of each path, separated by empty nodes, thus marking its end. Moreover
there will be two or three robots moving from node 7 to node L − 8 of each
path. If these robots are located in the same node (thus forming a tower), their

40 P. Flocchini et al.

position codes a numerical value. By combining these values on all paths, we
obtain the value of the counter. Since on each path there are L − 14 available
positions, the value of the counter is the resulting integer written in base L−14.

Let q = 	2 logn/ log log n
 and L1 = 1
10 log n. Take q of the descending paths

described in the proof of Lemma 2 (chosen in an arbitrary deterministic way,
identical for all robots, and excluding p1), and in the ith path, where 1 ≤ i ≤ q,
take the lower part of size L1 + i. These will be the descending paths of the first
counter. Similarly, let L2 = L1 + q + 1. Take a set of q descending paths, other
than those used for the first counter and other than p1. In the ith path, where
1 ≤ i ≤ q, take the lower part of size L2 + i. These will be the descending paths
of the second counter.

Another module of the brain is the semaphore consisting of two of the de-
scending paths constructed in the proof of Lemma 2 (again excluding p1). In
each of these paths take the lower part of distinct constant sizes. The beginning
and end of each path is marked similarly as in the counter. Likewise, there are
two or three robots moving in each of these paths, their possible locations re-
stricted to node 7 and 8 in each path. In each path, if these robots are located
in the same node (thus forming a tower), they code one bit. Thus the semaphore
has 4 possible values 00, 01, 11, 10.

Finally, the garbage is the first descending path p1 constructed in the proof
of Lemma 2. This path has the property that its beginning is at the root of
the piece. This path has length at least 1

8 log n, and thus larger than the total
number of robots, for sufficiently large n. The role of the garbage is to store all
robots of the brain not used for the counters and the semaphore. The garbage
is filled by putting a tower or a robot every 5 nodes in the path, until all robots
are disposed. Therefore the end of the path is marked similarly as for paths in
the counter and the semaphore, but the beginning is left unmarked.
Ordering of Robots
We first define a total order � on the set of all views. Let V = V iew(T, v)
and V ′ = V iew(T ′, v′). If the height of T is smaller than the height of T ′ then
V � V ′. Otherwise, if the height of both trees is 0 then (x, ∅) � (x′, ∅), if x ≤ x′,
where 0 < 1 < ∗. If the height of both trees is positive, the order of views is
the lexicographic order on the sequences (x, V iew(T1, v1), . . . , V iew(Tm, vm)),
where views at children are ordered increasingly by induction.

We now define the following total preorder ≤ on the robots in the rooted
tree T . Let R1 and R2 be two robots located at nodes v1, v2, at distances d1
and d2 from the root. (In the case of the bicentroid, we consider the distance
to its closer extremity.) We let R1≤R2, if and only if, d1 < d2, or d1 = d2 ∧
V iew(T, v1) � V iew(T, v2). Note that the equivalence relation induced by this
preorder is exactly the equivalence between robots defined previously. We say
that a robot is larger (smaller) than another one meaning the preorder ≤. A
robot not equivalent to any other is called solitaire.

Lemma 3. The number of equivalent robots in any piece is either 1 or even.

It follows from Lemma 3 that any unique piece with an odd weight must contain
a solitaire.

Remembering without Memory: Tree Exploration 41

Description of Algorithm Tree-exploration

Phase 1. There is no tower in the snapshot.
Goal: Empty the core zones of all pieces and create one tower in one piece.

We first free the core zones by moving every robot to an empty child, as
long as such a child exists, except for up to two robots that may move from one
piece to another. As described below, these exceptional robots are solitaires. The
objective here is to have a unique heaviest piece with the additional property
that it is either of odd weight or completely occupied by robots (i.e. every node of
the piece is occupied by a robot). This is always possible because k ≡ 5 (mod 6).
Indeed, if there are two heaviest pieces, then there must exist a third piece of
odd weight, and thus a solitaire of this piece (whose existence is guaranteed by
Lemma 3) can move to one of the heaviest pieces, thus breaking the tie. If there
is a unique heaviest piece, but of even weight and not completely occupied by
robots, then there must exist another piece of odd weight, and thus a solitaire of
this piece (whose existence, again, is guaranteed by Lemma 3) can move to the
heaviest piece. Note that the case of three heaviest pieces is impossible because
k is not divisible by 3.

As soon as the required properties hold in a piece P and the core zones are
empty (except for possibly one robot in the core zone of P), a tower is created
outside the core zone of P by moving a solitaire to an occupied node in such a
way that at least half the robots in P , including a solitaire, are located outside
the subtree rooted at the tower. The latter precaution is taken to have enough
robots to form and subsequently move towers in Phase 2 using the solitaire. The
way this is done will be described in the sequel.

Phase 1 has been clearly identified by the absence of towers in the snapshot.
Such an easy characterization is not available in the subsequent phases, hence we
use a gadget called signal to identify them. A signal is a largest set of at least 4
towers situated on a descending path inside a piece, such that consecutive towers
are separated by two empty nodes. The value of a signal is x − 1, where x is the
number of towers in it. This value will indicate the number of the current phase.

Phase 2. There is at least one tower and no signal in the snapshot.
In this phase piece P can be recognized as the unique piece where there is a

tower outside the core zone and Q as the largest among pieces other than P (in
the case of a tie Q is any piece with robots in the core zone.) Notice that, at
the beginning of Phase 2, the core zone of Q does not contain any robots. Hence
there is room in it for the brain.
Goal: Construct and initialize the brain in the core zone of piece Q, prepare the
other pieces for exploration, and create the signal.

Stage 1. Goal: Move robots from P in order to construct the brain in Q and
prepare P for exploration.

We now describe the way to form towers in P and move them to appropriate
places in the descending paths forming the brain in Q. Robots migrate from
piece P to piece Q, one or two robots at a time. The next robot or pair of robots
starts its trip from P to Q only after the previous one is at its place. The aim

42 P. Flocchini et al.

is to occupy target nodes by towers. Nodes in descending paths are filled one
path after another in a DFS post-order of beginnings of the paths. Thus a tower
occupies a node v only after all robots in the subtree rooted at v are in their
target positions. This rule applies to all descending paths of the brain, except
the garbage. The latter is constructed at the end, after all other parts of the
brain are completed. This is possible because the descending path containing
the garbage starts at the root of the piece (path p1 described in the proof of
Lemma 2). The above migration of towers is done until there remains only a
single tower and a solitaire in P . This prepares P for exploration.

There are two difficulties in performing this migration, both due to symmetries
in configurations of robots. The first difficulty is to form towers consisting of only
two robots in P and the other is to place such a tower in a specific target node
in Q. (We want to restrict the size of towers in order to be able to create many
of them using the available robots).

The essence of the first difficulty is that equivalence classes of robots can be
large and thus it may be difficult to form a single small tower. (For example,
if all robots in a piece are equivalent and occupy the same level, a single small
tower cannot be formed without outside help.) We solve this problem by using a
solitaire to break symmetry between two equivalent robots. More precisely, the
solitaire moves to meet one of the equivalent robots thus creating a tower of two
robots. At the same time the other equivalent robot becomes a solitaire.

The essence of the second difficulty is that if there are at least two equivalent
target positions that a tower could occupy, the adversary could break the tower at
the time when the tower tries to go down from the least common ancestor of these
target nodes, sending each of the robots forming the tower to a different target
node. We solve this problem by using a solitaire to first break the symmetry
between these target positions. This solitaire, called the guide of the tower, is
placed in one of these positions, thus indicating that the tower should go to the
closest of the equivalent positions. As soon as the tower reaches its target, the
solitaire is again available to break other symmetries, either those encountered
when forming towers in P or when placing them in Q.

Stage 1 ends with the brain constructed in the core zone of piece Q. Moreover,
in piece P there remain only a single tower and a robot without towers in its
ancestors.

Stage 2. Goal: Empty the third piece P ′ (other than P and Q), if it exists.
This is done as follows. A largest robot of P ′, not in the root of P ′ (either a

free robot or in a tower) goes to its parent. When there are no robots outside
the root, the robots from the root of P ′ go to the garbage in Q. This way of
merging all robots of P ′ at the root of this piece prevents accidental creation of
a signal. Stage 2 ends when the ending condition of Stage 1 holds and piece P ′,
if it exists, is empty.

Stage 3. Goal: Create the signal.
The signal is created at the bottom of the garbage (without considering tow-

ers marking its end). Towers descend in the garbage one at a time, until two
sequences consisting of 4 towers, each at distance 3 from the preceding one, are

Remembering without Memory: Tree Exploration 43

created. These two sequences are separated by 5 empty nodes. Since there is no
longer sequence of this type in the entire tree, the value of the newly created
signal is 3. This completes Stage 3 and the entire Phase 2. (Note that we use two
sequences forming a signal, rather than just one, in order to be able to move one
of these sequences later on, without destroying the value of the signal. In fact
we also need to leave two additional towers between these sequences, in order to
update the value of signal from 3 to 4, when passing to Phase 4.)

From now on all towers in the entire tree are separated by at least one empty
node. Hence if a tower moves and the adversary breaks it by holding back some
of the robots of the tower, this can be recognized in subsequent snapshots and
the moving tower can be reconstructed. Note that from now on we need not
specify the existence of a tower in the snapshot, since the signal contains towers.

Phase 3. The value of signal is 3.
Goal: Explore P ′′: the largest of the pieces other than Q. (We explore this piece
first to be able to relocate the brain into it in Phase 4: the other piece could be
too small.)

At the beginning of Phase 3 both counters indicate value 0. Piece P ′′ will
be explored by the free robot and the tower that are currently outside Q. They
will be called exploring robot and exploring tower, respectively. These two en-
tities explore leaves of P ′′ one similarity class after another in increasing order,
induced by any total preorder of the nodes, with the following property: the
equivalence classes induced by this preorder are the previously defined similar-
ity classes. The entities move only if both counters indicate the same value i.
Suppose that the jth class has size sj . Let r be such that i = s1 + · · · + sd + r,
with r ≤ sd+1. Hence the brain indicates that the next leaf to be explored is the
rth leaf in the (d+1)st class. If r = 1, the exploring robot goes to any leaf of the
(d + 1)st class. Otherwise, consider two cases. If r is even then let u be the leaf
where the exploring robot is located. In this case the exploring tower goes to the
(unique) closest leaf in the same similarity class. If r is odd then let v be the leaf
where the exploring tower is located. In this case the exploring robot goes to the
leaf w determined as follows. Let j be the length of the longest sequence of 1’s
counted from the right (least significant bit) of the binary expansion of the inte-
ger (r − 3)/2. Order all leaves of the similarity class of v in any non-decreasing
order of distances from v. The leaf w is the 2j+1th node in this order. Notice
that w is the closest leaf from v not yet explored.

Incrementing values of both counters from i to i+1 and moving the exploring
robots according to those increments are complex actions involving relocation of
many robots. Due to asynchrony, snapshots can be taken during these complex
actions, potentially disorganizing the process. To ensure correct exploration, we
artificially synchronize these actions using the semaphore. Its values change in
the cycle 00, 01, 11, 10, 00, Note that the changes of values of the semaphore
do not need additional synchronization, as each change involves a move of only
one robot or tower. In the case of a move of a tower, the adversary can split the
tower by delaying some of its robots and moving others, hence the value of the

44 P. Flocchini et al.

corresponding bit is unclear and robots must decide which value should be set.
Nevertheless this is never ambiguous: for example, if the value of the first bit is
0 and the second is unclear, it must be set to 1 because, when the first bit is 0,
the only possible change of the second bit is from 0 to 1. Other cases are similar.

At the beginning of Phase 3 the semaphore is at 00. This indicates that the
first counter has to modify its value to i + 1, where i is the current value of the
second counter. When this is done, the value of the semaphore changes to 01. This
indicates that the second counter has to modify its value to the current value of
the first counter. When this is done, the value of the semaphore changes to 11.
This indicates that the exploring robot or the exploring tower (depending on the
parity of the value shown by the counters) has to move to the neighbor of the leaf
it occupies. When this is done, the value of the semaphore changes to 10. This
indicates that the exploring entity which is in an internal node (i.e., the one that
has just moved) has to move to the leaf indicated by the value of both counters,
as explained above. When this is done, the value of the semaphore changes to 00.

Phase 3 is completed when the semaphore has value 11 and both counters
have value f + 1, where f is the number of leaves in piece P ′′. At this time the
value of signal is changed from 3 to 4 (by moving an additional tower down the
garbage), thus marking the end of this phase. Note that, when both counters
have value f + 1, all leaves of P ′′ are explored. There are two cases. If P ′′ = P
then at least one path between the root and a leaf of P ′′ has been explored when
P was evacuated. Otherwise, at least one path between the root and a leaf of
P ′′ has been explored when the exploring solitaire came from P to explore P ′′.
Hence in both cases all leaves and at least one path between the root and a leaf
have been explored. Since by the description of the exploration the explored part
of P ′′ is connected, this implies that the entire piece has been explored.

Phase 4. The value of signal is 4.
Goal: Relocate the brain from Q to P ′′ (except when there are only two pieces
and Q has few leaves, in which case exploration of Q is done immediately: see
Subcase 2.2).

While the brain is relocated to P ′′, piece Q is emptied and thus ready to be
explored. Piece Q is emptied in reverse order of its filling in Phase 2, i.e., robots
that came last to Q leave it first. We will need the exploring solitaire and tower
in piece Q in order to perform exploration during Phase 5. Hence while towers
forming the old brain move from Q to P ′′, the solitaire and the exploring tower
move in the opposite direction. This creates a problem when the tree has a long
path of nodes of degree two, between the old brain and piece P ′′: there is no
room to cross on this path. Hence for this class of trees we will use a particular
technique. Consider two cases.
Case 1. There exist nodes v and w outside P ′′ such that the path from the root
of P ′′ to each of them does not contain robots and there exists a path from a
tower in Q to the root of P ′′ not containing robots and not containing v or w.

Remembering without Memory: Tree Exploration 45

In this case there is no crossing problem. The solitaire and the exploring tower
from Q can hide in v and w to let the towers from Q (that formed the old brain)
move to P ′′.

Case 2. There are no nodes v and w as described in Case 1.
Let M be the largest integer such that 10c logM/ log log M ≥ log M .

– Subcase 2.1. The number of leaves in piece Q is larger than M .
Since any tree of maximum degree 3 containing f leaves has height at least

log f , the condition on integer M implies that there exists a descending path in
Q, with beginning u, satisfying the following properties:
(1) it is able to store all towers needed to explore Q, leaving distance 4 between
consecutive towers. (We leave distance 4 not to confuse the sequence of towers
with a signal.)
(2) there exist two leaves outside the tree rooted at u.

All towers from Q are moved to the above descending path leaving 3 empty
nodes between consecutive towers, with the following exception. When moving
the first five towers, the value of the signal is recreated using these towers. This
is done before moving the second sequence of the signal created in Phase 2.
After moving 2c log M/ log log M towers, all additional towers from this path
are collapsed to one tower. After this compacting the condition of Case 1 holds
because of property (2).
– Subcase 2.2. The number of leaves in piece Q is at most M .

In this case there are so few leaves that we can explore all of them without
using a brain. First we recreate the signal in P with value 4, to record the phase
number. Then all robots from Q go to the leaves. When all leaves are occupied,
all robots go towards the root of Q forming a tower in this root, thus exploring
the remaining nodes of Q. At this point the algorithm stops (explicit stopping
condition).

Thus, after a finite number of moves in Case 2, either the exploration is
completed (Subcase 2.2) or the algorithm transits to Case 1. From now on we
suppose that the condition of Case 1 holds.

We continue Phase 4 by creating a signal with value 4 in piece P ′′. This is done
by moving towers from the top of the garbage in Q and placing them outside
the core zone in P ′′. The path forming the signal is of bounded length and thus
there is enough space outside the core zone to place it. Moreover we place three
additional towers in this path to be able to subsequently increase the value of
the signal up to 7. After this is done we create the new brain in P ′′, similarly
as in Phase 2. In particular, we use the solitaire as a guide to direct the towers
coming from Q to their target positions. Note that all towers and robots in the
core zone of Q are alone in their equivalence classes and thus there is no need
to break symmetries using solitaires. When the counters and the semaphore of
the new brain are created in P ′′, all robots from Q, except the exploring tower
and solitaire are moved to the garbage of the new brain. Note that all the above
actions are possible, since the solitaire and towers are able to move between
pieces Q and P ′′ without crossing problems.

46 P. Flocchini et al.

When there is only the exploring tower and solitaire in Q, the value of signal
in P ′′ is incremented to 5. This ends Phase 4.

Phase 5. The value of signal is 5.
Goal: Explore piece Q and stop if there are only two pieces.

We proceed exactly as in Phase 3, this time exploring piece Q instead of P ′′.
When the brain indicates that all leaves are explored, two situations are possible.
If there are only two pieces in the tree, all nodes are already explored and the
algorithm stops (explicit stopping condition). If there are three pieces, the value
of signal is incremented to 6. This ends Phase 5.

Phase 6. The value of signal is 6.
Goal: Reinitialize the brain and relocate the exploring solitaire to the unexplored
piece.

Both counters in the brain are reset to 0, the semaphore is reset to 00. The
exploring solitaire moves to the root of the unexplored piece. The value of signal
is incremented to 7. This ends Phase 6.

Phase 7. The value of signal is 7.
Goal: Explore the last piece and stop.

The piece containing only a solitaire is explored (using this solitaire and the
tower from Q). This is done again as in Phase 3. When the brain indicates that
all leaves are explored, exploration is completed and the algorithm stops (explicit
stopping condition).

It remains to give the conditions on the constant c such that the number k of
robots satisfies c log n/ log log n ≤ k ≤ 2c logn/ log log n. The constant c should
be chosen so that there are sufficiently many robots to form the brain (including
the markers of descending paths’ extremities) and the exploring team. Note that
if there are three pieces in the tree, and robots are initially equally divided among
them, only k/3 robots will be used.

3.3 Exploration of Trees of Maximum Degree 3: Lower Bound

We now prove a lower bound on the number of robots necessary for exploration
of complete binary trees, that matches the upper bound given by Algorithm
Tree-exploration.

Theorem 2. Ω(log n
log log n) robots are required to explore n-node complete binary

trees.

4 Concluding Remarks and Open Problems

A natural next research step would be the investigation of the exploration prob-
lem when the visibility of the robots is limited, e.g., to the immediate neigh-
borhood. Notice that, in this case, exploration is not generally possible. Hence
a limited visibility scenario could only work for some subset of initial configura-
tions. Another line of research would be to equip robots with very small (e.g.,

Remembering without Memory: Tree Exploration 47

constant) memory of past events and study how this additional power influences
feasibility of exploration with limited or unlimited visibility. Finally, it would be
interesting to extend our study to the case of arbitrary graphs, as well as to the
stronger SSynch model.

References

1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. on Com-
put 29, 1164–1188 (2000)

2. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point
convergence algorithm for mobile robots with limited visibility. IEEE Trans. on
Robotics and Automation 15, 818–828 (1999)

3. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering
problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)

4. Cohen, R., Peleg, D.: Local algorithms for autonomous robot systems. In: Proc.
13th International Colloquium on Structural Information and Communication
Complexity, (SIROCCO 2006). LNCS, vol. 3221, pp. 29–43. Springer, Heidelberg
(2006)

5. Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the
plane. In: Proc. 10th International Conference on Principles of Distributed Systems
(OPODIS 2006). LNCS, vol. 4288, pp. 744–753. Springer, Heidelberg (2006)

6. Dessmark, A., Pelc, A.: Optimal graph exploration without good maps. Theoretical
Computer Science 326, 343–362 (2004)

7. Fleischer, R., Trippen, G.: Exploring an unknown graph efficiently. In: Brodal, G.S.,
Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 11–22. Springer, Heidelberg
(2005)

8. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communicat-
ing: Ring exploration by asynchronous oblivious robots. In: Tovar, E., Tsigas, P.,
Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 105–118. Springer, Heidel-
berg (2007)

9. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theoretical Computer Science 337, 147–168 (2005)

10. Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic
memory. In: Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2007), pp. 585–594 (2007)

11. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. Theoretical Computer Science 390, 27–39 (2008)

12. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. Journal of Algo-
rithms 33, 281–295 (1999)

13. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots.
Theoretical Computer Science 384, 222–231 (2007)

14. Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots
with inaccurate compasses. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS,
vol. 4305, pp. 333–349. Springer, Heidelberg (2006)

15. Sugihara, K., Suzuki, I.: Distributed algorithms for formation of geometric patterns
with many mobile robots. Journal of Robotic Systems 13(3), 127–139 (1996)

16. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28, 1347–1363 (1999)

Average Binary Long-Lived Consensus:

Quantifying the Stabilizing Role Played by
Memory

Florent Becker1, Sergio Rajsbaum2, Ivan Rapaport3, and Éric Rémila1,�

1 Université de Lyon, LIP UMR 5668 CNRS - ÉNS Lyon - UCB Lyon 1, France
2 Instituto de Matemáticas, Universidad Nacional Autónoma de México

3 DIM and CMM, Universidad de Chile

Abstract. Consider a system composed of n sensors operating in syn-
chronous rounds. In each round an input vector of sensor readings x is
produced, where the i-th entry of x is a binary value produced by the
i-th sensor. The sequence of input vectors is assumed to be smooth: ex-
actly one entry of the vector changes from one round to the next one.
The system implements a fault-tolerant averaging consensus function f .
This function returns, in each round, a representative output value v of
the sensor readings x. Assuming that at most t entries of the vector can
be erroneous, f is required to return a value that appears at least t + 1
times in x. The instability of the system is the number of output changes
over a random sequence of input vectors.

Our first result is to design optimal instability consensus systems with
and without memory. Roughly, in the memoryless case, we show that an
optimal system is D0, that outputs 1 unless it is forced by the fault-
tolerance requirement to output 0 (on vectors with t or less 1’s). For the
case of systems with memory, we show that an optimal system is D1, that
initially outputs the most common value in the input vector, and then
stays with this output unless forced by the fault-tolerance requirement
to change (i.e., a single bit of memory suffices).

Our second result is to quantify the gain factor due to memory by
computing cn(t), the number of decision changes performed by D0 per
each decision change performed by D1. If t = n

2 the system is always
forced to decide the simple majority and, in that case, memory becomes
useless. We show that the same type of phenomenon occurs when n

2 − t
is constant. Nevertheless, as soon as n

2 − t ∼
√

n, memory plays an
important stabilizing role because the ratio cn(t) grows like Θ(

√
n). We

also show that this is an upper bound: cn(t) = O(
√

n) for every t.
Our results are average case versions of previous works where the

sequence of input vectors was assumed to be, in addition to smooth,
geodesic: the i-th entry of the input vector was allowed to change at
most once over the sequence. It thus eliminates some anomalies that
ocurred in the worst case, geodesic instability setting.

� Partially supported by Programs Conicyt “Anillo en Redes”, Instituto Milenio de
Dinámica Celular y Biotecnoloǵıa and Ecos-Conicyt, and IXXI (Complex System
Institute, Lyon).

A. Shvartsman and P. Felber (Eds.): SIROCCO 2008, LNCS 5058, pp. 48–60, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Average Binary Long-Lived Consensus 49

1 Introduction

Consider a system composed of n sensors sampled at synchronous rounds. In each
round an input vector of sensor readings is produced, where the i-th entry of the
vector is a value from some finite set V produced by the i-th sensor. To simplify the
presentation, the sampling interval is assumed to be short enough, to guarantee
that the sequence of input vectors is smooth: exactly one entry of a vector changes
from one round to the next one.

There are situations where, for fault-tolerant purposes, all sensors are placed
in the same location. Ideally, in such cases, all sensor readings should be equal.
But this is not always the case; discrepancies may arise due to differences in sen-
sor readings or to malfunction of some sensors. Thus, the system must implement
some form of fault-tolerant averaging consensus function f , that returns a repre-
sentative output value v of the sensor readings x. Assuming that at most t entries
of a vector x can be erroneous, f is required to return a value that appears at least
t + 1 times in x.

The same questions arise when consensus is done not between the values of
sensors, but between the opinions of actors. Suppose for example that you have a
server which can give several types of data to a bunch of clients. At a given time,
each client has a favorite type of data it wants to receive, but the server can only
broadcast one type of data to all the clients. If there is a cost to switching between
requests (say, because one can no longer use cached data), then in order to serve
as much clients as possible in the long-run, it might be wise to sometimes give a
content that fewer of them want, but which we have already started serving.

In a social setting, the same kind of question arises whenever a group has to
make a consensual decision. For example, consider a disc-jockey in a wedding
party. There are both older people, who fancy dancing to a nice waltz, and
younger ones, eager to get their kicks on techno music. Our disc-jockey has to
make sure that the dance-floor is never too empty according to who is ready to
dance at a given time. But if he changes the music too often, then nobody is
going to be happy: stability matters. More seriously, in an election system, one
might want to have a decision that is at the same time representative and stable,
so that the policies which are decided have the time to be applied. In a setting
where there is no term-mandate and decision-making is done live, we show that
the stability can be enforced through election rules (i.e., the decision function).

In this context, the most natural function f is the one that returns the most
common value of vector x. However, the instability of such function is high. In
fact, as the next example shows (n = 5 and t = 1), the output value computed
by this f could change from one round to the next one unnecessarily often:

inputs: 00011 → 10011 → 10010 → 11010 → · · ·
outputs: 0 → 1 → 0 → 1 → · · ·

If instead of the previous f we consider the one that decides the smallest value
in x that appears at least t+1 times, then no output changes would have occurred
in the previous sequence (in the example 0 < 1 and t + 1 = 2). Moreover, in

50 F. Becker et al.

order to reduce further the instability, we could consider a function that tries to
stay with the ouput of previous rounds.

The worst case instability of consensus functions was studied in two previous
papers [3,5]. The input sequence considered in those papers was assumed to be,
in addition to smooth, geodesic: the i-th entry of the input vector was allowed to
change at most once over the sequence. The instability of a consensus function
was given by the largest number of output changes over any such sequence,
called a geodesic path. Notice that a geodesic path must be finite, since the set
V from which the input vectors draw their values is finite. The case V = {0, 1}
of binary input vectors was considered in [5]. The case of multi-valued input
vectors, where the set V is arbitrary, turned out to be much more difficult and
required higher-dimensional topological methods [3].

In this paper we initiate a study of the average instability of consensus func-
tions. We tackle the case V = {0, 1} of binary input vectors. We remove the
geodesic requirement and therefore the smooth sequences of input vectors we
consider here are random walks over the hypercube. If P = X0, X1, . . . is such
a walk, then the average instability of a consensus function f is given by the
fraction of time f changes its output over P . The first goal is –given n and t– to
find out what function f minimizes the instability in the two possible scenarios:
with memory and without memory. We obtain the following results.

For the memoryless case we show that a system D0, that outputs 1 unless it
is forced by the fault-tolerance requirement to output 0 (on vectors with t or less
1’s), is optimal. For the case of systems with memory, we show that a system
D1, that initially outputs the most common value in the input vector, and then
stays with its output unless forced by the fault-tolerance requirement to change,
is optimal. Thus, a single bit of memory suffices to achieve optimal instability.
We should point out that in order to compute the instability of D1 we use a
non-trivial result concerning the Ehrenfest Markov chain model (which gives a
simple expression to the value of the expected time to go from state k to state
k + 1 [14]).

Our second goal is to measure the stabilizing role played by memory. A nat-
ural way of doing this is by computing cn(t), the number of decision changes
performed by D0 per each decision change performed by D1. We prove that
cn(t) = O(

√
n), and this upper bound is reached when n/2 − t = α

√
n, with α

constant. In contrast, if t or n/2 − t are constant then cn(t) is also constant.
Our approach eliminates some anomalies that occured in the worst case

geodesic instability setting. For instance, in the case of t = 0 (which is inter-
esting because it leaves maximum freedom on the choice of f), it was proved
in [5] that any optimal instability memoryless function must be one-bit defined,
i.e., output the value of the i-th sensor. Intuitively, such a function has high
instability. Indeed, in our average case setting, its instability is 1/n, much higher
than the optimal average instability of 1/2n given by the function f0 which is
always 1 unless all sensors have a value 0.

As noted in [5], studying the instability of consensus functions may have
applications in various areas of distributed computing, such as self-stabilization

Average Binary Long-Lived Consensus 51

[4] (indeed, see [10]), Byzantine agreement [1], real-time systems [11], complexity
theory [8] (boolean functions), and VLSI energy saving [2,12,16] (minimizing
number of transitions).

Also, it would be interesting to relate our results to natural phenomena that
exhibit hysteresis (memory). It is known, for instance, that some biological phe-
nomena exhibit hysteresis [9,15]. Did they appear in evolution as a way to min-
imize instability? The approach could also be applied in the social sciences. In
fact, wouldn’t it be possible to conceive an electoral system which instead of
deciding by simple majority incorporates some memory in order to eliminate
noise? Notice that system D1, which minimizes instability, corresponds to an
hysteretic switch.

This paper is organized as follows. In Section 2 we describe the model and
define the instability measure. Section 3 considers memoryless consensus systems,
while Section 4 considers the general case. In Section 5 we quantify the relevance
of memory by analyzing the behavior of the gain factor for different values of t.

2 Instability

Let n, t be non-negative integers, n ≥ 2t + 1. The hypercube of dimension n
is a graph whose vertices Vn = {0, 1}n are all binary n-dimensional vectors,
called input vectors. The edges En are all pairs of vertices whose vectors differ
in exactly one component. Notice that |En| = n2n−1. The distance d(x1, x2)
between two vertices x1, x2 is equal to the number of entries in which they differ.
Thus, d(x1, x2) = d iff the shortest path between x1 and x2 in the hypercube
is of length d. We denote by #b(x) the number of entries in x that are equal
to b ∈ {0, 1}. The corners of the hypercube are the vertices 0n and 1n. The
d-neighborhood of a vertex x of the hypercube, N d(x), is the set of vertices at
distance at most d from x. Thus, N t(0n) = {x | #1(x) ≤ t}, and similarly for
1n. Since n ≥ 2t + 1, N t(0n) ∩ N t(1n) = ∅.

Let x0, x1, . . . be the vertices of a walk in the hypercube. We will consider
functions f that assign, to each xi, an output value d that satisfies the fault-
tolerance requirement:

f(xi) = d ⇒ #d(xi) ≥ t + 1.

In the memoryless case f is a function only of xi. In general, f outputs d based on
the previous vertices of the walk. Formally, a system is a tuple D = (n, t, S, τ, f),
where S is a finite set of states that includes a special initial state ⊥ ∈ S,
τ : Vn×S → S is the transition function, and f : Vn×S → {0, 1} is the consensus
decision function. The fault-tolerance requirement implies, for all x ∈ Vn, s ∈ S:

f(x, s) =
{

0 if x ∈ N t(0n)
1 if x ∈ N t(1n)

An execution of the system is a sequence (x0, s0, d0) → (x1, s1, d1) → . . .,
where s0 = ⊥, si+1 = τ(xi, si), and di = f(xi, si). A triple (xi, si, di) is a
configuration.

52 F. Becker et al.

We assume that if x is the current input vector, then the next input vector x′

is taken in a random uniform way from the vectors at distance one from x in the
hypercube. The initial input vector is chosen according to some distribution λ.
Once the initial state x0 is determined, so is the initial configuration, (x0, s0, d0).
The next configuration is produced by choosing at random a neighbor of x0, say
x1, and we get the next configuration (x1, s1, d1), where s1 = τ(x0, s0) and
d1 = f(x1, s1).

Formally, we define the following Markov process: the set of states is Vn × S
and there is a transition from (x, s) to (x′, s′) if {x, x′} ∈ En and τ(x, s) = s′.
Therefore, any random walk X0, X1, X2, . . ., where X0 is chosen according to λ,
defines an execution.

Each state (x, s) has an associated output value f(x, s), so we may write
di = f(Xi) to be the output value associated to Xi. Let cλ,l(D) be the random
variable defined by:

cλ,l(D) =
1
l

l−1∑
k=0

|dk+1 − dk|.

Definition 1. The average instability of a consensus system D is c(D) =
�(lim

l→∞
cλ,l(D)).

The Markov chain described above is finite and hence c(D) exists by the ergodic
theorem1.

3 Average Instability of Memoryless Systems

In a memoryless system |S| = 1, and τ is irrelevant, so the system is defined
by a triplet D = (n, t, f), where f : Vn → {0, 1}. In this case, the Markov
chain is irreducible2, and its set of states is Vn. That is, X0, X1, X2, . . . is a λ-
random walk on the hypercube, and its stationary distribution π is the uniform
πx = 1/2n, for every x ∈ Vn (for notation see [13])). The instability of f counts
the number of times the function f changes its decision along a random walk.
By the ergodic theorem, the fraction of time the random walk crosses bicolored
edges (where changes in the decision take place) tends to the number of bicolored
edges divided by |En| = n2n−1.

Proposition 1. Let D = (n, t, f) be a memoryless system. Then,

c(D) =

∑
{x,y}∈En

|f(x) − f(y)|
n2n−1

Proof. Since by definition c(D) = �(lim
l→∞

cλ,l(D)), it is sufficient to prove that

cλ,l(D) −→
l→∞

∑
{x,y}∈En

|f(x) − f(y)|
n2n−1 a.s.

1 When S is not finite, c(D) might not exist, but c′(D) = �(lim inf
l→∞

cλ,l(D)) always

exists, and can be considered as a lower bound for the cost.
2 In an irreducible Markov chain, it is possible to get to any state from any state.

Average Binary Long-Lived Consensus 53

This follows directly from the ergodic theorem. Formally, we consider the Markov
chain (X0, X1), (X1, X2), . . . in which each state is an arc e = (Xi, Xi+1) ∈ −→

E n,
an ordered couple of neighbor vertices of the hypercube. Therefore the function
defined over the set of states (the arcs) is f(Xi, Xi+1) = |f(Xk+1) − f(Xk)|. In
this standard approach one needs to verify that the chain is irreducible and that
the unique invariant distribution is the uniform distribution in order to conclude
that:

cλ,l(D) =
1
l

l−1∑
k=0

f(Xk, Xk+1) −→
l→∞

∑
e∈−→

E n

πef(e)=
1

2n2n−1

∑
e∈−→

E n

f(e)

=
1

n2n−1

∑
e∈En

f(e) a.s.

3.1 Geodesic Worst Case vs. Average Instability

The worst case geodesic instability measure of [5,3] depends on the values f takes
in a small part of the hypercube, given by a geodesic path (where the i-th entry
of a vector changes at most once). In contrast, the average instability permits
walks that traverse the whole hypercube. We are going to remark this difference
by giving two examples for which the values behave in opposite ways.

Let us assume t = 0. In this case the only restrictions appear in the corners
of the hypercube. More precisely, f(dn) = d.

Suppose that the output of f depends exclusively on what happens in one
particular processor (the i-th processor). In other words, consider the function
f (i)(x) = x(i), where x = x(1) . . . x(n). By common sense, this is clearly a bad
strategy. But in terms of the geodesic analysis, this function appeared to be
optimal [5]. Morover, it was proved that any optimal function must be of this
form (when t = 0). The explanation comes from the fact that in a geodesic path,
once the i-th coordinate changes, it can not change anymore. On the other hand,
by Proposition 1, the average instability of f (i) is c(f (i)) = 1

n2n−1
2n

2 = 1
n .

It is easy to see that the average instability of f (i) is far from being optimal.
For example, assume n is odd. And let f(x) = 1 if and only if x = 0k1l with
l odd. There is a geodesic path for which the function changes all along the
path. Nevertheless, there is a small number of 1’s in the hypercube. And, in fact,
c(f) = 1

n2n−1
n
2 n = n

2n << c(f (i)).

3.2 Optimal Memoryless Systems

Let Γi denote the set of vectors x ∈ Vn satisfying #1(x) = i. In other words, Γi

is the set of nodes of the hypercube at distance i from 0n. Recall that N k(x) =
{y | d(x, y) ≤ k}. Let us define D0 = (n, t, f0) with f0(x) = 0 if and only if
x ∈ N t(0n). In other words, f0 is always 1 unless the fault-tolerance requirement
forces the system to decide 0. We prove below that D0 is an optimal memoryless
system.

54 F. Becker et al.

Theorem 1. Let D = (n, t, f) be a memoryless system. Then c(D0) ≤ c(D),

with c(D0) = (n−1
t)

2n−1 .

Proof. By Proposition 1, in order to compute c(D0), we need to count the number
of bicolored edges {x, y} induced by f0. This number is (n− t)

(
n
t

)
because |Γt| =(

n
t

)
and each vertex in Γt is connected to n − t vertices in Γt+1. Thus, c(D0) =

(n−t)(n
t)

n2n−1 = (n−1
t)

2n−1 . It remains to show that there is no system D = (n, t, f) of
lower cost.

We show this using network flow theory. We orient the edges of he hypercube
from Γi to Γi+1, and we assign a capacity 1 to each of these arcs. An output
function f induces a cut, i.e., an (S, T)-partition of the vertices of the hypercube.
In fact, S are the vertices that output 0 and T are the vertices that output 1.
Since N t(0n) ⊆ S and N t(1n) ⊆ T , we are in fact dealing with cuts separating
Γt and Γn−t. The capacity of the cut is the number of edges starting in S and
ending in T . This number (divided by n2n−1) is precisely the average instability
of D.

The cut induced by f0 has capacity (n − t)
(

n
t

)
. If we prove that this is a

minimum cut, we are done. We do this by describing a flow from Γt to Γn−t that
saturates this cut, which proves the cut is minimum, by the min-cut/max-flow
theorem. The flow on an arc linking a node of Γi to a node of Γi+1 is uniformly
(n−1

t)
(n−1

i) , for t ≤ i < n − t. Notice that the law of flow conservation is satisfied

since, at a vertex x ∈ Γi, t < i < n − t, one easily checks that the incoming

flow (n − i) (n−1
t)

(n−1
i) is equal to the outgoing flow i

(n−1
t)

(n−1
i−1)

. The flow of each arc e is

at most 1, and the total transported flow is equal to
(
n
i

)
(n − i) (n−1

t)
(n−1

i) = n
(
n−1

t

)
.

Finally n
(
n−1

t

)
= (n − t)

(
n
t

)
, which is equal to the capacity of the cut.

3.3 Symmetric Memoryless Systems: The Ehrenfest Urn Model

Random walks turn out to be particularily interesting when the function f is
symmetric, i.e., when it depends only on the distribution of 0’s and 1’s in the
input vector. These functions are of the follwing type: “if i sensors are measuring
the value 1 then the output is d”. In these cases, we can project the hypercube
into a path, whose vertices are {0, . . . , n}. We can therefore assume that f is
defined over this set of vertices, instead of over the vertices of the hypercube.
Instead of considering the state x we consider the state i = #1(x). We get a new
Markov chain with transitions:

�{i → (i + 1)} =
n − i

n
�{i → (i − 1)} =

i

n
.

This process is known as the Ehrenfest urn model [7]. The probability of
moving from i to i + 1 is simply the probability of moving from a vertex with i
entries equal to 1 to a vertex with i + 1 entries equal to 1. There are n − i such
edges that can cause this to happen.

Average Binary Long-Lived Consensus 55

The invariant distribution of the Ehrenfest model (easily computable by pro-

jection of the uniform distribution of the hypercube) is known to be πi = (n
i)

2n .
Therefore, the invariant distribution of the coupled states corresponding to the

arcs (i, i + 1) and (i + 1, i) are π(i,i+1) = (n
i)

2n
n−i
n , and π(i+1,i) = (n

i+1)
2n

i+1
n . Thus,

π(i,i+1) = π(i+1,i) = (n−1
i)

2n .

Theorem 2. Let D = (n, t, f) be a symmetric memoryless system. Then,

c(D) =
n−1∑
i=0

(
n − 1

i

)
|f(i + 1) − f(i)|

2n−1 .

Proof. We know from the ergodic theorem that

cλ,l(D) −→
l→∞

n−1∑
i=0

π(i,i+1)|f(i + 1) − f(i)| +
n−1∑
i=0

π(i+1,i)|f(i + 1) − f(i)| a.s.

The result follows from the fact that π(i,i+1) = π(i+1,i) = (n−1
i)

2n .

Remark 1. We can recompute the instability of sytem D0 introduced in previous
section, because f0 is symmetric: f0(i) = 1 ⇐⇒ i > t. Therefore, c(D0) =(
n−1

t

) 1
2n−1 .

Remark 2. D0, in the context of the geodesic analysis in [5], appeared to be
optimal only among the symmetric memoryless systems.

4 Average Instability of Systems with Memory

Let us define the following system having only one bit of memory: D1 =
(n, t, S1, f1, τ1), where S1 = {⊥, 0, 1} and

f1(x, s) = τ1(x, s) =

⎧⎪⎪⎨
⎪⎪⎩

0 if #1(x) ≤ t
1 if #0(x) ≤ t
maj(x) if s = ⊥
s otherwise

Here, maj(x) returns the most common bit value in x ∈ {0, 1}n, and 1 in case
of a tie.

Remark 3. System D1 is optimal in the geodesic cost model [5]. Nevertheless,
the proof is much more complicated than in the memoryless case.

Theorem 3. For every system D = (n, t, S, τ, f), we have c(D1) ≤ c(D). More-
over,

c(D1) =

(
2n−1

n−t−1∑
k=t

1(
n−1

k

)
)−1

and 1
c(D1)

is the average time necessary to pass from t to n − t in the Ehrenfest
model.

56 F. Becker et al.

t−1,00,0 t,0 t+1,0 n−t,0n−t−1,0

t,1 t+1,1 n−t−1,1 n−t,1 n−t+1,1 n,1

Fig. 1. The auxiliar Markov chain for D1 (with t = 2)

Proof. Let D = (n, t, S, τ, f) be an arbitrary system. Let x0, x1, . . . , xl be the
first l + 1 vertices of a walk in the hypercube. We can associate to each of these
vertices a symbol in {∗, 0, 1} depending on whether the system is not forced to
decide (t < #0(xi), #1(xi) < n− t), it is forced to decide a 0 (#1(xi) ≤ t) or it is
forced to decide a 1 (#0(xi) ≤ t). We therefore obtain a sequence y ∈ {∗, 0, 1}l+1.
Let us delete the symbols ∗ in y in order to obtain a shorter binary string y′.
Let c′(y′) be the number of changes in two consecutive symbols of y′ (either 01
or 10). It is clear that the number of output changes of f over the same walk is
at least c′(y′). Since c′(y′) is exactly the number of output changes of f1 over
the walk, we have that cλ,l(D1) ≤ cλ,l(D) over each random walk. Therefore,
c(D1) ≤ c(D).

It remains to study the average instability of D1. Since f1 is symmetric, we
can project the system into states of the form

(i, s)∈({0, . . . , t − 1}×{0}) ∪ ({t, . . . , n − t}×{0, 1})∪ ({n − t + 1, . . . , n}×{1}),

where i denotes the number of 1’s the processors are reading and s denotes the
last output of f1 (we are not considering the case s = ⊥ because it appears only
once, at the beginning). The transitions are the following:

�{(i, s) → (i + 1, s′)} = (
n − i

n
)1{f(i,s)=s′}

�{(i, s) → (i − 1, s′)} = (
i

n
)1{f(i,s)=s′}

The Previous Markov chain is irreducible and it has a stationary distribution
π (to see that we only need to exhibit a positively recurrent state, for instance
(0, 0)). We know that cλ,l(D1) corresponds to the fraction of time the chain has
been in states (t, 1) or (n−1, t) at time l. In fact, the system changes its decision
each time it reads t 1’s while its last decision was 1, or when it reads t 0’s while
its last decision was 0 (see Figure 1).

Then, by the ergodic theorem, cλ,l(D1) converges almost surely to πt,1 +
πn−t,0. By symmetry, it follows that c(D1) = 2πt,1. We denote the expected time
necessary to pass from a state (i, a) to a state (j, b) by �(i,a)(T(j,b)). Since the
inverses of the expected return times correspond to the stationary distribution,
we have c(D1) = 2

�(t,1)(T(t,1))
. But, since each cycle passing through (t, 1) also

passes through (n − t, 0),

�(t,1)(T(t,1)) = �(t,1)(T(n−t,0)) +�(n−t,0)(T(t,1))

Average Binary Long-Lived Consensus 57

By symmetry, we have �(t,1)(T(n−t,0)) = �(n−t,0)(T(t,1)). On the other hand,
for each i �= t, we have �(t,1)(T(i,0)) = �(t,0)(T(i,0)). Thus we obtain:

c(D1) =
2

2�(t,0)(T(n−t,0))
=

1
�(t,0)(T(n−t,0))

The expected time to reach state (n − t, 0) starting from (t, 0) is equal to the
expected time to reach state n− t starting from state t in the classical Ehrenfest
model. In fact, in this part of the walk the system will always be in state 0 and
it only shifts to 1 when leaving the position n − t.

The last result follows from a theorem of [14], in which the authors prove that
the expected time to go from state k to state k + 1 in the Ehrenfest model is
equal to 1

(n−1
k)

∑k
j=0

(
n
j

)
. Thus,

1
c(D1)

=
n−t−1∑

k=t

1(
n−1

k

)
k∑

j=0

(
n

j

)

Stating k′ = n − 1 − k we get:

1
c(D1)

=
n−t−1∑
k′=t

1(
n−1

n−1−k′

)
n−k′−1∑

j=0

(
n

j

)
=

n−t−1∑
k′=t

1(
n−1
k′

)
n∑

j=k′+1

(
n

j

)

Thus, adding the two expressions of 1
c(D1)

we have:

2
c(D1)

=
n−t−1∑

k=t

2n(
n−1

k

) .

5 The Stabilizing Role Played by Memory

In order to quantify the stabilizing role played by memory we must compute
the number of decision changes of the optimal memoryless system D0 per each
decision change performed by the optimal 1-bit of memory system D1. More
precisely, we must study the ratio c(D0)

c(D1)
. Since we are interested in the asymptotic

behavior n → ∞, we note n instead of n − 1:

cn(t) =
c(D0)
c(D1)

=
n−t∑
k=t

(
n
t

)
(
n
k

)

5.1 Upper Bounds

First we prove an upper bound that is independent of t.

Lemma 1. cn(t) = O(
√

n)

58 F. Becker et al.

Proof. Let us assume (w.l.o.g.) that n is even.

cn(t) = 2
n/2∑
k=t

(
n
t

)
(
n
k

) = 2
n/2∑
k=t

(t + 1)(t + 2) . . . k

(n − k + 1)(n − k + 2) . . . (n − t)
.

Let 1 ≤ sn ≤ n/2 (sn grows with n; later it becomes clear why we should
choose sn =

√
n). If t + sn > n/2 then cn(t) ≤ 2

∑n/2
k=n/2−sn+1 1 = 2sn. Let us

consider the case t + sn ≤ n/2. It follows:

cn(t) = 2
t+sn∑
k=t

(t + 1)(t + 2) . . . k

(n − k + 1)(n − k + 2) . . . (n − t)

+2
n/2∑

k=t+sn+1

(t + 1)(t + 2) . . . k

(n − k + 1)(n − k + 2) . . . (n − t)

≤ 2 + 2sn +

2
n/2∑

k=t+sn+1

(t + 1) . . . (t + sn)
(n − t) . . . (n − t − sn + 1)

(t + sn + 1) . . . k

(n − t − sn) . . . (n − k + 1)

≤ 2 + 2sn + 2(n/2 − t − sn)
(

t + sn

n − t − sn

)sn

Let x = n/2− t−sn. Let gn(x) = 2+2sn +2x
(

1− 2x
n

1+ 2x
n

)sn

. Since cn(t) ≤ gn(x),
our goal is to find the maximum of gn(x). By computing g′n(x0) = 0 we get

x0 =
nsn

2

(
−1+

√
1 +

1
s2

n

)
=

nsn

2

(
−1+1+

1
2s2

n

+ o

(
1
s2

n

))
=

n

4sn
+ o

(
n

sn

)
.

Since 2x0
n = 1

2sn
+ o

(
1
sn

)
, it follows:

cn(t) ≤ 2 + 2sn + 2
(

n

4sn
+ o

(
1
sn

))
expsn(log(1− 1

2sn
+o(1

sn
))−log(1+ 1

2sn
+o(1

sn
))

≤ 2 + 2sn + 2
(

n

4sn
+ o

(
1
sn

))
exp−1+o(1) = O(sn +

n

sn
)

Since either sn or n
sn

grows faster than
√

n, the best we can do is to choose
sn =

√
n in order to conclude cn(t) = O(

√
n).

5.2 Lower Bounds

The main question is whether there are values of t for which the previous upper
bound is reached, i.e., whether cn(t) = Θ(

√
n) for some relation between n and

t. We are going to see first that this does not happen for extremes values of t.

Average Binary Long-Lived Consensus 59

Lemma 2. When t is constant, lim
n→∞ cn(t) = 2.

Proof. Notice first that cn(t) = 2 +
∑n−t−1

k=t+1
(n

t)
(n

k)
. When t is a constant, (n

t)
(n

t+1)
=

(n
t)

(n
n−t−1)

= O(1/n). For t + 2 ≤ k ≤ n − t − 2, (n
t)

(n
k)

= O(1/n2) and there are O(n)

such k’s. Thus, lim
n→∞ cn(t) = 2.

The previous result can be explained as follows: for t constant, the Markov
process will rarely enter a state where it needs to change its decision, either with
D0 or D1. Thus, the chain, between two forced decisions, will be shuffled. Once
shuffled, in half of the cases the chain will force the system to take the same
decision it took before. On the other hand, when t is close to n/2, almost all the
decisions are forced. In this case the ratio is also bounded by a constant. In fact,

Lemma 3. When t = n/2 − β, lim
n→∞ cn(t) ≤ 2 + 2β.

Proof. We have cn(t) = 2 +
∑n−t−1

k=t+1
(n

t)
(n

k)
. The sum above contains (less than)

2β terms, which are all smaller than 1. Thus, cn(t) ≤ 2 + 2β when n tends to
infinity.

The interesting case appears when t is close to n/2 but this distance grows with
n. More precisely,

Lemma 4. Let t = n/2 − α
√

n (with α constant). Then cn(t) = Θ(
√

n).

Proof. It only remains to prove the lower bound (see Lemma 1).

cn(n/2 − α
√

n) ≥
α
√

n∑
k=0

(
n

n/2−α
√

n

)
(

n
n/2−α

√
n+k

)

=
α
√

n∑
k=0

(n/2 − α
√

n + 1)(n/2 − α
√

n + 2) . . . (n/2 − α
√

n + k)
(n/2 + α

√
n)(n/2 + α

√
n − 1) . . . (n/2 + α

√
n − k + 1)

≥
α
√

n∑
k=0

(
n/2 − α

√
n

n/2 + α
√

n

)k

≥ α
√

n

(
1 − 2α√

n

1 + 2α√
n

)α
√

n

= α
√

n expα
√

n(log(1− 2α√
n

)−log(1+ 2α√
n

))

= α
√

n exp−4α+o(1√
n

) = Ω(
√

n)

References

1. Berman, P., Garay, J.: Cloture votes: n/4-resilient distributed consensus in t+1
rounds. Math. Sys. Theory 26(1), 3–19 (1993)

2. Chandrakasan, A.P., Brodersen, R.W.: Low power digital CMOS design. Kluwer
Academic Publishers, Dordrecht (1995)

60 F. Becker et al.

3. Davidovitch, L., Dolev, S., Rajsbaum, S.: Stability of Multi-Valued Continuous
Consensus. SIAM J. on Computing 37(4), 1057–1076 (2007); Extended abstract
appeared as Consensus Continue? Stability of Multi-Valued Continuous Consensus!
In: 6th Workshop on Geometric and Topological Methods in Concurrency and
Distributed Computing, GETCO 2004 (October 2004)

4. Dolev, S.: Self-Stabilization. The MIT Press, Cambridge (2000)
5. Dolev, S., Rajsbaum, S.: Stability of Long-lived Consensus. J. of Computer and

System Sciences 67(1), 26–45 (2003); Preliminary version in Proc. of the 19th
Annual ACM Symp. on Principles of Distributed Computing, (PODC 2000), pp.
309–318 (2000)

6. Diaconis, P., Shahshahani, M.: Generating a random permutation with random
transpositions. Probability Theory and Related Fields 57(2), 159–179 (1981)

7. Ehrenfest, P., Ehrenfest, T.: Ueber zwei bekannte EingewÃd’nde gegen das Boltz-
mannsche H-Theorem. Zeitschrift für Physik 8, 311–314 (1907)

8. Kahn, J., Kalai, G., Linial, N.: The Influence of Variables on Boolean Functions.
In: Proc. of the IEEE FOCS, pp. 68–80 (1988)

9. Kramer, B., Fussenegger, M.: Hysteresis in a synthetic mammalian gene network.
Proc. Natl. Acad. Sci. USA 102(27), 9517–9522 (2005)

10. Kutten, S., Masuzawa, T.: Output Stability Versus Time Till Output. In: Pelc, A.
(ed.) DISC 2007. LNCS, vol. 4731, pp. 343–357. Springer, Heidelberg (2007)

11. Kopetz, H., Veŕıssimo, P.: Real Time and Dependability Concepts. In: Mullender,
S. (ed.) Distributed Systems, ch. 16, pp. 411–446. ACM Press, New York (1993)

12. Musoll, E., Lang, T., Cortadella, J.: Exploiting the locality of memory references to
reduce the address bus energy. In: Proc. of the Int. Symp. on Low Power Electronics
and Design, August 1997, pp. 202–207 (1997)

13. Norris, J.R.: Markov Chains. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, Cambridge (1998)

14. Palacios, J.L.: Another Look at the Ehrenfest Urn via Electric Networks. Advances
in Applied Probability 26(3), 820–824 (1994)

15. Pomerening, J., Sontag, E., Ferrell, J.: Building a cell cycle oscillator: hysteresis
and bistability in the activation of Cdc2. Nature Cell Biology 5, 346–351 (2003)

16. Su, C.-L., Tsui, C.-Y., Despain, A.M.: Saving power in the control path of embed-
ded processors. IEEE Design & Test of Comp., 24–30 (1994)

Distributed Approximation Algorithm for

Resource Clustering

Olivier Beaumont, Nicolas Bonichon, Philippe Duchon,
and Hubert Larchevêque

Université de Bordeaux, INRIA Bordeaux Sud-Ouest, Laboratoire Bordelais de
Recherche en Informatique

Abstract. In this paper, we consider the clustering of resources on large
scale platforms. More precisely, we target parallel applications consisting
of independant tasks, where each task is to be processed on a different
cluster. In this context, each cluster should be large enough so as to
hold and process a task, and the maximal distance between two hosts
belonging to the same cluster should be small in order to minimize la-
tencies of intra-cluster communications. This corresponds to maximum
bin covering with an extra distance constraint. We describe a distributed
approximation algorithm that computes resource clustering with coordi-
nates in Q in O(log2 n) steps and O(n log n) messages, where n is the
overall number of hosts. We prove that this algorithm provides an ap-
proximation ratio of 1

3 .

1 Introduction

The past few years have seen the emergence of a new type of high performance
computing platform. These highly distributed platforms, such as BOINC [3]
or WCG [2] are characterized by their high aggregate computing power and
by the dynamism of their topology. Until now, all the applications running on
these platforms (seti@home [4], folding@home [1],...) consist in a huge number
of independent tasks, and all data necessary to process a task must be stored
locally in the processing node. The only data exchanges take place between
the master node and the slaves, which strongly restricts the set of applications
that can be performed on this platform. Two kind of applications fit in this
model. The first one consists in application, such as Seti@home, where a huge
set of data can be arbitrarily split into arbitrarily small amount of data that can
be processed independently on participating nodes. The other application that
are executed on these large scale distributed platforms correspond to Monte-
Carlo simulations. In this case, all slaves work on the same data, except a few
parameters that drive Monte Carlo simulation. This is for instance the model
corresponding to Folding@home. In this paper, our aim is to extend this last set
of applications. More precisely, we consider the case where the set of data needed
to perform a task is possibly too large to be stored at a single node. In this case,
both processing and storage must be distributed on a small set of nodes that will
collaborate to perform the task. The nodes involved in the cluster should have

A. Shvartsman and P. Felber (Eds.): SIROCCO 2008, LNCS 5058, pp. 61–73, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

62 O. Beaumont et al.

an aggregate memory larger than a given threshold, and they should be close
enough (the latencies between those nodes should be small) in order to avoid
high communication costs. In this paper, we focus on a preliminary subproblem,
namely, that of efficiently forming groups of participating nodes that will be able
to collaborate for solving these tasks.

This corresponds, given a set of weighted items (the weights are the storage
capacity of each node), and a metric (based on latencies), to create a maximum of
groups so that the maximal latency between two hosts inside each group is lower
than a given threshold, and so that the total storage capacity of a group is greater
than a given storage threshold. This problem turns out to be difficult, even if one
node knows the whole topology (i.e. the available memory at each node and the
latency between each pair of nodes). Indeed, even without the distance constraint,
this problem is equivalent to the classical NP-complete bin covering problem [6].
Similarly, if we remove the constraint about storage capacity, but keep the distance
constraint, the problem is equivalent to the NP-Complete disk cover problem [10].

Moreover, in a large scale dynamic environment such as BOINC, where nodes
connect and disconnect at a high rate, it is unrealistic to assume that a node
knows all platform characteristics. Therefore, in order to build the clusters, we
need to rely on fully distributed schemes, where a node makes the decision to
join a cluster based on its position, its weight, and the weights and positions of
its neighbor nodes. In order to estimate the position of the nodes involved in the
computation, we rely on mechanisms such as Vivaldi [7,9] that associate to each
node a set of coordinates in a low dimension metric space, so that the distance
between two points approximates the latency between corresponding hosts.

To the best of our knowledge, this paper is the first attempt to consider both
criteria (memory and latency) simultaneously. Therefore, since our aim is also
to design fully distributed algorithms, we limit our study to the case where the
coordinates of the points lie in Q and we consider memory constraints only (one
could imagine to add other constraints, such as a minimal aggregate computing
power or a minimal aggregate disk storage).

In this paper, we present a fully distributed greedy algorithm that creates a
number of bins approximating the optimal within a 1

3 ratio. This result can be
compared to some results on classical bin covering in centralized environment
without the distance constraint. In this (easier) context, a PTAAS (polynomial-
time asymptotic approximation scheme) has been proposed for bin covering [8],
i.e. algorithms Aε such that for any ε > 0, Aε can perform, in a polynomial time,
a (1 − ε)-approximation of the optimal when the number of bins tends towards
the infinite. Many other algorithms have been proposed for bin covering, such
as [6], that provides algorithms with approximation ratio of 2

3 or 3
4 , still in a

centralized environment.
The 1

3 approximation ratio algorithm we propose in this paper takes both
memory and distance constraints into account and can be efficiently implemented
in practice on a Peer To Peer (P2P for short) platform using a skip-graph [5] as
overlay. The overall number of exchanged messages is of order O(n log n) and it
takes at most O(log2 n) rounds to converge.

Distributed Approximation Algorithm for Resource Clustering 63

The rest of the paper is organized as follow : in Section 2, we prove that any
”reasonable” (i.e. satisfying two natural constraints) greedy algorithm leads to
an approximation ratio of 1

3 . In Section 3, we present an efficient distributed
algorithm to compute prefix sums using a skip graph [5]. This algorithm is
later used in Section 4, where we detail the implementation and the theoretical
properties of the distributed approximation algorithm we propose for solving bin
covering problems with distance constraint.

2 Distance Constrained Bin Covering: Greedy
Approximation

2.1 Bin Covering Subject to Distance Constraints

Since our aim is to build clusters whose aggregate power is large enough and such
that any two nodes belonging to the same cluster are close enough, we introduce
the “Distance Constrained Bin Covering” decision problem (DCBC for short).

Definition 1 (DCBC: Distance Constrained Bin Covering)

Input: – a set S = {s1, ...sn} of elements,
– a position function pos : S → E where (E, d) is a metric space,
– a weight function w : S → Q+,
– a weight threshold W ,
– an integer K,
– a distance bound dmax.

Output: Is there a collection of K pairwise disjoints subsets S1, ...SK of S such
that ∀i ≤ K:

∑
s∈Si

w(s) ≥ W and ∀(u, v) ∈ Si, d(u, v) ≤ dmax?

Clearly, DCBC is NP-Complete, since the case where all elements are at the same
location corresponds to the classical Bin Covering problem. In what follows, for
the sake of clarity, we normalize the weights of the elements (divide them by W)
and set W = 1 and we do not consider elements whose weight is larger than 1,
since such an element can form a group by itself and can be removed. In the rest
of the paper, we propose several approximation algorithms (both centralized and
decentralized) for the corresponding optimization problem we call max DCBC,
in the restriction when the metric space E is taken to be Q with the usual
distance.

2.2 Approximation Ratio of 1
3

In this section, we propose an algorithm that provides an approximation ratio of
1
3 for max DCBC. We say that a bin is interval-based if the positions of all the
elements of this bin belong to an interval and if any element whose position is
in this interval belongs to the considered bin. On the other hand, we only deal
with greedy bins, in the sense that the weight of a bin is strictly less than 2,

64 O. Beaumont et al.

considering that when the weight of a bin is 2 or more, any element of this bin
can be removed without invalidating the bin.

The following Lemma states that any maximal solution consisting of mini-
mal interval-based bins reaches an approximation ratio of 1

3 with respect to the
optimal (i.e. without the interval-based condition) solution.

Lemma 1. A solution to max DCBC problem that satisfies the following
constraints

P1: Bins are interval-based and the weight of each bin is strictly smaller than 2,
P2: No valid interval-based bin can be created with the remaining elements,

approaches the optimal solution within a ratio 1
3 .

Note that these are the conditions satisfied by the solutions given by a greedy
algorithm that repeatedly creates interval-based bins until none are possible any
more.

Proof. Let us consider a solution S = {B1, . . . Bk} of max DCBC satisfying
the above conditions, and S∗ an optimal solution (not necessarily satisfying the
above conditions). Let us denote by l(Bi) (resp. r(Bi)) the left (resp. right)
bound of Bi. We assume that ∀1 ≤ i ≤ k − 1, r(Bi) < l(Bi+1), for the sake of
simplicity.

We define the extended area of Bi as the interval [l(Bi)−dmax, r(Bi)+dmax].
Clearly, because of P2, any bin in S∗ intersects one of the B′

is and is therefore
included in its extended area.

Chains: We call chain a maximal sequence of consecutive bins (Bj , . . . Bj+k−1)
such that, as in Figure 1, each extended area of each bin Bi of the sequence
intersects the neighbouring bin (r(Bi)+dmax ≥ l(Bi+1)). Consider the extended
area of a chain, denoted as the interval Ic, where Ic = [l(Bj)−dmax; r(Bj+k−1)+
dmax] for each chain c of a solution.

Since any bin B in S∗ is included in the extended area of a bin of our solu-
tion, each bin in S∗ is included in the extended area of at least one chain. We
arbitrarily affect each bin of S∗ to a chain of our solution.

We prove in what follows that no more than 3k bins of S∗ can be affected to
a chain containing k bins, hence the approximation ratio of 1

3 .
We now claim that w([l(Bj) − dmax; r(Bj+k−1) + dmax]) < 3k + 1, for a chain

c = (Bj , . . . Bj+k−1) containing k bins. This obviously implies that no more than
3k bins of S∗ can be included in Ic. Indeed, the considered interval is the union
of k bin intervals (each with weight w(Bi) < 2 as per P1), k − 1 intervals of the
form (r(Bi), l(Bi+1)) (each with weight strictly less than 1 as per P2), and of
the two intervals [l(Bj) − dmax, l(Bj)) and (r(Bj+k−1), r(Bj+k−1) + dmax] (also
each with weight strictly less than 1). The total weight in the extended area of
a chain containing k bins is w(c) < 3k + 1, thus no more than 3k bins of S∗

can be affected to this chain. Summing over all chains, the number of bins in S∗

cannot be larger than three times the number of bins in S.

Distributed Approximation Algorithm for Resource Clustering 65

Ic

jB

j+k−1B

dmax

<=dmax

Fig. 1. Example of a chain of 4 bins

3 Preliminaries: Overlay and Prefix Sums Computation

Our approximation algorithm for max DCBC, described in Section 4, runs on
a special overlay network, and uses prefix sums computations as a preliminary
step. In this section, we describe both elements.

3.1 The Skip-Graph Overlay

To each element of the list to group is associated a host of the network.
First we will present the overlay we use for the network, whose goal is to min-

imize the number of exchanged messages necessary to perform the bin covering
of the elements, while being easy to maintain and construct. This overlay is a
skip-graph [5], a structure inspired by skip-lists [12,11].

A skip-list is organized as a succession of ordered lists containing fewer and
fewer nodes at each level i: for i > 0, each host at level i − 1 appears in the list
of level i with probability p (we use p = 1/2). The hosts belonging to the level i
list are linked to each other according to the coordinates’ order of the basic list.

In the overlay network we use, hosts are organized as nodes of a skip-graph,
and ordered by their positions, i.e their coordinates in Q. To make notations
simpler, we identify each host x with its position and write x ≤ y for
pos(x) ≤ pos(y), where pos is the position function as defined in Section 2.
In a skip-graph, there are up to 2i lists at level i, each indexed by a binary word
of length i. Each host x generates a key key(x), a sequence of random bits, using
a sequence of random coin flips. At each level i, the level 0 list Lε, containing
all hosts ordered by coordinates, is partitioned into 2i lists, each containing the
hosts sharing the same first i key bits. Each host stops its key generation as soon
as it is the only host in a level i list, i.e. as soon as no other host shares the
exact first i key bits. Then it only keeps the first i bits of its key.

For an example, see Figure 2.

Notations. Let x be a host. We use bi(x) to denote the first i bits of key(x),
h(x) to denote the number of bits of key(x), and Li(x) the level i list x belongs

66 O. Beaumont et al.

to, i.e. Li(x) = Lbi(x). We also use Pred(L, x) as the predecessor of x in the list
L (or −∞ if x is the first in L), and, likewise, Succ(L, x) as the successor of x in
the list L (or +∞ if x is the last in L). In fact in what follows we more often use
Predi(x) to denote Pred(Li(x), x) (and Succi(x) for the equivalent successor).

We recall a few facts about the skip-graph data structure, detailed in [5]

Theorem 1 ([5] Search time in a skip-graph). The expected search time in
a skip graph is O(log n).

Theorem 2 ([5]). With high probability, the maximum height of an element in
a n-node skip-graph is O(log n).

We will use this overlay to compute the prefix sums for each host.

3.2 Prefix Sums Computation

We recall the fact that each host x has a weight w(x) < 1. We define the prefix
sum S(x) of a host x to be the sum of the weights of every host in Lε between
the first host and x, included. We also define a level i partial prefix sum Si(x):

Si(x) =
∑
z∈Lε

Predi(x)<z≤x

w(z). (1)

Thus Si(x) is the sum of the weights in the basic list, Lε, of every host between
its level i predecessor(excluded) and itself (included). It can also be defined as
S(x) − S(Predi(x)).

To compute Si(x), we use the following recurrence: Thus we have:

Si(x) = sum z∈Li−1(x)

Predi(x)<z≤x

Si−1(z). (2)

(To prove equation 2, notice that the first z in the summation is Succi−1(Predi(x)),
and the positive and negative terms cancel each other, leaving only S(x) and
−S(Predi−1(Succi−1(Predi(x)))) = −S(Predi(x)).)

Note that S0(x) = w(x) and S(x) = Sh(x)(x).

Algorithm. Algorithm 1, running on each host, uses the skip-graph to compute
the partial prefix sum for each host at each level. It runs upward in the levels of
the skip-graph, ending at the highest level for each host. When the computation
ends at a host x, it knows each of its partial prefix sums Si(x).

Time model. We consider that each message transmission is done in a unit time,
and we do not consider computation time on each host.

Theorem 3. Algorithm 1 computes all the prefix sums, using a skip-graph as
overlay, in O(log2 n) time steps and O(n log n) messages, with high probability.

Distributed Approximation Algorithm for Resource Clustering 67

L
1

L
00

L
01

L
10

L
11

L
000

L
010

L
011

L
001

L
0

6

000

6

6

6

5

11

5

5

4

011

4

4

4

3

001

3

3

3

2

10

2

2

1

010

1

1

1

Llevel 0

level 1

level 2

level 3

ε

Fig. 2. Example of skip-graph, with 4 levels and 6 nodes in Lε

Proof. Number of messages

– Each message has this form: < i, b, w >. We call i the message level, b the
message key and w the message weight.

– Each message weight is null when it is first emitted (before the first
retransmission).

– Each level i message is sent by a host to its level i successor.
– Whenever a level i message is received by a host x with a key not matching

bi(x), the message sent in response (line 10 of Algorithm 1) is considered to
be the same message, retransmitted with increased weight(this still counts
in the total number of messages). Note that the first host x of each level i
list sends automatically two messages, so that the first host to its right with
a key not matching bi(x) also computes its Si+1 sum on line 12.

– As soon as a level i message is received by a host x with a key matching
bi(x), it is not retransmitted anymore (line 12 of Algorithm 1), and its weight
is used by the receiving host to compute its level i + 1 partial prefix sum.

Note that, given a list at level i, and two neighbouring hosts in this list, only
two messages are exchanged between those two hosts at this level, sent by the
leftmost one to the rightmost one.

68 O. Beaumont et al.

Algorithm 1. Algorithm for a host x

1: S0(x) = 0
2: for each level i = 0, 1, 2, . . . do
3: if Predi(x) == −∞ then
4: send to Succi(x): < i, bi+1(x), 0 >, < i, bi+1(x), Si(x) >
5: else if Succi(x) �= +∞ then
6: send to Succi(x): < i, bi+1(x), 0 >
7: for each received message < i, b, w > do
8: as soon as Si(x) is known:
9: if b �= bi+1(x) then

10: send < i, b, w + Si(x) > to Succi(x)
11: else
12: Si+1(x) = Si(x) + w
13: end if
14: end for
15: end if
16: end for

In Algorithm 1, each host sends two messages by level: at a given level, the
first host of the list sends its two messages on line 4, and every other host sends
one message on line 6, and the other on line 10. Thus each host x send 2h(x)
messages (and receive as many messages). By Theorem 2, with high probability,
O(n log n) messages are sent during the execution of Algorithm 1.

Time analysis
If x1...xk are consecutive elements of a same level i list L, such that all belong to
the same level i + 1 list L′, and Pred(L, x1) /∈ L′, and Succ(L, xk) /∈ L′, we call
{x1, ...xk} a level i siblings set. Note that at each level, the largest siblings set
is of length O(log n) with high probability. For more information on this result,
see [12].

Each level i message is transmitted through a whole siblings set before it
reaches its destination y. During these transmissions, it collects the partial prefix
sums contributions to Si(y). When a host receives a message at a time T , it can
retransmit it at a time T + 1.

If we write Ti(x) for the instant where x learns Si(x), Ti = maxx∈Lε Ti(x),
and M for the maximal size of all the siblings sets:

Ti(x) = max
j=0..m

(Ti−1(yj) + m − j + 1) (3)

where y0 = Predi(x), m is the size of the (potentially empty) level i − 1 siblings
set between Predi(x) and x, and yj , 1 ≤ j ≤ m is the jth host of this siblings
set. Note that for all hosts x, T0(x) = 0.

Thus
Ti(x) ≤ max

j=0..m
(Ti−1(yj) + m + 1) ≤ Ti−1 + M + 1. (4)

Distributed Approximation Algorithm for Resource Clustering 69

Thus Ti ≤ Ti−1 + M + 1. Thus, if we write H = maxx∈Lε h(x), we have
TH ≤ H(1 + M). Both H and M are O(log n); the upper bound on the number
of time steps follows.

Note that we suspect the O(log2 n) bound is pessimistic, and that a tighter
analysis would yield Θ(log n).

4 A Distributed Approximation Algorithm

In this section, the n hosts to cluster are linked by a skip-graph as overlay
network. Hosts are identified to their index in Lε, i.e.. we write i ≤ j if the
host i is before j in Lε. Sending a message from a host i to the host j using the
overlay network can be done with O(log |i − j|) messages with high probability.

First we present a distributed algorithm computing the clustering of a list of
weighted hosts, without the distance restriction. Then this restriction is added
to our algorithm in subsection 4.2. The final algorithm has an approximation
ratio of 1

3 , as per Lemma 1.
Note that any greedy algorithm without distance restriction has an obvious

approximation ratio of 1
2 , if it creates groups weighting strictly less than 2.

The following algorithms creates interval-based bins in Lε. Each created bin
corresponds to a cluster of the platform. The clusters are defined in the following
way: each grouped host received the identifier of a host, called leader. A cluster
is a set of hosts having the same leader. Here the leader of a cluster is always
the leftmost host of the group.

4.1 Clustering Algorithm without Distance Constraints

The recursive treatment is based on a procedure that takes 3 parameters: li
(left index), ri (right index) and rli (right leader index), with li < rli ≤ ri.
This routine is executed by host j = � li+rli

2 	. This procedure creates clusters
included in the intervals [li, ri), having their leader in the intervals [li, rli[. To
begin the clustering of the hosts, send < 0, n, n > to host �n/2	. The principle
of this routine is quite simple. If host j can be leader of a cluster included in
interval [li, ri), it creates this cluster and recursively call the procedure on the
two sublists respectively before and after the newly created cluster. If it cannot be
leader, no other host after j can create such a cluster in interval (j, rli), hence
it will only look for leaders in the sub-interval [li, j − 1) for clusters included
in [li, ri).

The recursive routine is described in Algorithm 2. It uses two sub-routines:
rb(j) and buildCluster(a, b). The function rb(j) returns the minimum host k
after j such that pk ≥ 1 + pj , where pj is the prefix sum of host j; i.e. the
leftmost host that could possibly be the last host in an interval-based bin having
j as its first host. By convention, rb(j) = +∞ if no such host exists. The routine
buildCluster(a, b) defines a as leader for each host a ≤ j ≤ b.

70 O. Beaumont et al.

Algorithm 2. Algorithm for a coordinator j

1: Receive < li, rli, ri >
2: if j < ri then
3: if rb(j) < ri then
4: buildCluster(j, rb(j))
5: Send < li, j, j > to host � li+j

2 �
6: if rb(j) < rli then

7: Send < rb(j) + 1, rli, ri > to host � rb(j)+rli+1
2 �

8: end if
9: else

10: Send < li, j, ri > to host � li+j
2 �

11: end if
12: end if

Theorem 4. Consider n hosts linked by a skip-graph as overlay network. Al-
gorithm 2 computes a clustering of those hosts such that: (i) each cluster is an
interval of Lε of total weight w < 2; (ii) each interval of Lε of non-grouped
hosts has a weight w < 1. Moreover, Algorithm 2 runs in O(log2 n) steps and
O(n log n) messages with high probability.

Proof

Clustering: A host is said to be coordinator of an interval [li; ri) when it re-
ceives a message < li, rli, ri > and begins to execute Algorithm 2. It is
coordinator of this interval until it begins to send messages on line 5 or
on line 10. Thus, at each instant, for each host j, at most one host is the
coordinator of an interval containing j.

Each coordinator creates, if it can, a cluster included in the interval of
which it is coordinator. Then it designates at most two hosts as coordinators
of sub-intervals not containing any host of the created cluster. So for two
clusters having hosts (j, k) ∈ [0; n) as leaders, [j; rb(j))∩ [k; rb(k)) = ∅. Thus
any host affected to a cluster can not be affected later to another cluster: a
built cluster is definitively built. By definition of rb(j), constructed clusters
have a weight w < 2. (i) is thus proved.

To prove (ii), notice that there is a bijection between the set of coor-
dinator hosts and the set of maximum intervals of non-grouped hosts. At
the beginning, one host is coordinator of the whole interval of non-grouped
hosts. Then at each interval subdivision, either a cluster is created (line 4),
and two hosts are designated as coordinators of the two sub-intervals of non-
grouped hosts at each side of the created cluster (these two sub-intervals are
still maximal in terms of non-grouped hosts); or no cluster is created (line
9) and another host is designated coordinator of the same maximal interval
of non-grouped hosts.

Thus at the end of the execution of the algorithm, each maximal interval
[li; ri) of non-grouped hosts has host li as coordinator. Since this coordinator
does not create a cluster, rb(li) ≥ ri. Hence the cumulated weight of this
maximal interval is strictly less than 1. (ii) is thus proved.

Distributed Approximation Algorithm for Resource Clustering 71

Complexity: In the precomputation steps, the value rb(j) is computed by each
host j. This can be done in two steps: first compute the prefix sum for each
host (see Section 3.2). Then, based on the prefix sum, search for host rb(j).
By Theorem 1, this search in a skip-graph takes for each host a O(log n)
time w.h.p..

The routine buildCluster(a, b) takes O(h log h) messages and O(log h)
steps with h = b−a. Since all built bins are pairwise disjoint intervals, all ex-
ecution of buildCluster can be executed in parallel and will take O(log hmax)
time steps and O(n log n) messages total, w.h.p..

Each time a host executes Algorithm 2, it designates two hosts to be
coordinators of two sub-intervals (lines 5 and 7), or one host to be coordinator
of half the original one (line 10). Hence there are at most log n levels of
recursion. As each call of Algorithm 2 takes O(log(rli− li)) messages w.h.p.,
it takes O(n log n) messages and O(log2 n) steps total w.h.p..

Corollary 1 (Approximation ratio). The resulting clustering of Algorithm 2
has an approximation ratio of 1/3 with the optimal solution.

Proof. To prove this corollary, consider Lemma 1, using dmax = max(u,v)∈Lε

(d(u, v)). The first property is proved in Theorem 4, and the third property of
Lemma 1 is obviously verified as all hosts are at distance less than dmax from
each other.

4.2 Adding the Distance Restriction

We recall that each host j has a position pos(j), and that hosts are ordered in
Lε by their position.

A host j is eligible if it can be the leader of a cluster, that is if pos(rb(j)) ≤ 1+
pos(j). The function neh(j) return the next eligible host k after j. By convention,
neh(j) = +∞ if no such host exists. As for the previous algorithm, neh(j) and
rb(neh(j)) can be precomputed for each host j. Algorithm 3 is an adaptation of
Algorithm 2 that produces clusters of bounded diameter.

Algorithm 3. Algorithm for a coordinator j

1: Receive < li, rli, ri >
2: if li < ri then
3: if rb(neh(j)) < ri then
4: buildCluster(neh(j), rb(neh(j))
5: Send < li, j, neh(j) > to host � li+j

2 �
6: if rb(neh(j)) + 1 < rli then

7: Send < rb(neh(j)) + 1, rli, ri > to host � rb(neh(j))+rli+1
2 �

8: end if
9: else

10: Send < li, j, ri > to host � li+j
2 �

11: end if
12: end if

72 O. Beaumont et al.

Theorem 5. Consider n hosts with given positions, linked by a skip-graph as
overlay network respecting the order of their positions. Algorithm 3 computes
a clustering of those hosts with distance constrained such that: (i) each cluster
is an interval of Lε of diameter at most dmax and of weight w < 2; (ii) each
interval of Lε of non-grouped hosts of diameter d ≤ dmax has a total weight
w < 1.

Moreover, Algorithm 3 runs in O(log2 n) steps and O(n log n) messages with
high probability.

Proof. The complexity of this algorithm is clearly the same as Algorithm 2: at
each execution of Algorithm 3, the interval [li; rli] is split in at most two new
sub-intervals, each of size at most half the size of the original interval [li; rli].

(i): By definition of rb(j), and with a reasoning similar to the proof of The-
orem 2, constructed clusters have a weight strictly lower than 2. Moreover, by
definition of neh(j), created clusters have a diameter lower than dmax(≤ dmax).

(ii): The reasoning is still similar to the proof of Theorem 4. At the end of
the algorithm the coordinator of [li; ri) is li. As li does not create a cluster we
deduce that rb(neh(li)) ≥ ri, i.e the first host able to build a cluster at the right
of li would build a cluster overtaking the right bound ri. By definition of rb and
neh we deduce that no cluster of bounded diameter can be created in [li; ri).

Corollary 2 (Approximation ratio). The resulting clustering of Algorithm 2
has an approximation ratio of 1/3 with the optimal solution.

Proof. The proof of this corollary is a direct application of Lemma 1, of which
the two necessary properties are verified, proved in Theorem 5.

5 Conclusions

In this paper we have presented a distributed approximation algorithm, running
in O(log2 n) steps and O(n log n) messages, that computes resource clustering
for n hosts with coordinates in Q. This algorithm provides an approximation
ratio of 1

3 . We have restricted this work to a 1-dimensional case, but we are
working on the extension of our results to higher dimensions or more general
metric spaces.

As this work is meant to be used on large-scale platforms, it is necessary to
make our algorithms able to handle a high degree of dynamicity on the hosts of
the networks. Notably, they have to handle the dynamicity of the weights of the
hosts, because each user of a large-scale platform is likely to want its resources
back for its private use at any time.

It could also be interesting to work on a version in which each created cluster
would have many criteria to satisfy. In fact in our work, we just considered
that clusters had to offer a sufficient global storage capacity, but one may want
clusters to additionally ensure, for example, sufficient computing power.

Distributed Approximation Algorithm for Resource Clustering 73

References

1. Folding@home, http://folding.stanford.edu/
2. World community grid, http://www.worldcommunitygrid.org
3. Anderson, D.P.: Boinc: A system for public-resource computing and storage. In:

GRID 2004. Proceedings of the Fifth IEEE/ACM International Workshop on Grid
Computing, Washington, DC, USA, pp. 4–10. IEEE Computer Society, Los Alami-
tos (2004)

4. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: Seti@home:
an experiment in public-resource computing. Commun. ACM 45(11), 56–61 (2002)

5. Aspnes, J., Shah, G.: Skip graphs. In: Proceedings of the fourteenth annual ACM-
SIAM symposium on Discrete algorithms, pp. 384–393 (2003)

6. Assmann, S.F., Johnson, D.S., Kleitman, D.J., Leung, J.Y.T.: On a dual version
of the one-dimensional bin packing problem. Journal of algorithms(Print) 5(4),
502–525 (1984)

7. Cox, R., Dabek, F., Kaashoek, F., Li, J., Morris, R.: Practical, distributed network
coordinates. ACM SIGCOMM Computer Communication Review 34(1), 113–118
(2004)

8. Csirik, J., Johnson, D.S., Kenyon, C.: Better approximation algorithms for bin
covering. In: Proceedings of the twelfth annual ACM-SIAM symposium on Discrete
algorithms, pp. 557–566 (2001)

9. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: a decentralized network coor-
dinate system. In: Proceedings of the 2004 conference on Applications, technologies,
architectures, and protocols for computer communications, pp. 15–26 (2004)

10. Franceschetti, M., Cook, M., Bruck, J.: A geometric theorem for approximate disk
covering algorithms (2001)

11. Munro, J.I., Papadakis, T., Sedgewick, R.: Deterministic skip lists. In: Proceedings
of the third annual ACM-SIAM symposium on Discrete algorithms, pp. 367–375
(1992)

12. Pugh, W.: Skip lists: A probabilistic alternative to balanced trees. In: Workshop
on Algorithms and Data Structures, pp. 437–449 (1989)

http://folding.stanford.edu/
http://www.worldcommunitygrid.org

Sharpness:

A Tight Condition for Scalability

Augustin Chaintreau

Thomson
augustin.chaintreau@thomson.net

Abstract. A distributed system is scalable if the rate at which it com-
pletes its computation and communication tasks does not depend on its
size. As an example, the scalability of a peer-to-peer application that
transmits data among a large group depends on the topology and the
synchronization implemented between the peers. This work describes a
model designed to shed light on the conditions that enable scalability.
Formally, we model here a collection of tasks, each requiring a random
amount of time, which are related by precedence constraints. We assume
that the tasks are organized along an euclidean lattice of dimension d.
Our main assumption is that the precedence relation between these tasks
is invariant by translation along any of these dimensions, so that the evo-
lution of the system follows Uniform Recurrence Equations (UREs). Our
main result is that scalability may be shown under two general con-
ditions: (1) a criterion called “sharpness” satisfied by the precedence
relation and (2) a condition on the distribution of each task completion
time, which only depends on the dimension d. These conditions are shown
to be tight. This result offers a universal technique to prove scalability
which can be useful to design new systems deployed among an unlimited
number of collaborative nodes.

1 Introduction

Scalability is usually regarded as an important if not critical issue for any dis-
tributed communication/computation system. However, it is in general difficult
to describe formally in mathematical terms. This paper describes a model de-
signed to shed light on the impact of synchronization among an ever-increasing
number of nodes participating in a distributed system. The results we provide
answer the following question: “Under which general conditions is a distributed
system scalable, in the sense that the rate of tasks’ completion remains the
same independently of the number of participating nodes?” We characterize in
particular the impact of three factors: 1- the organization of the local feedback
and synchronization mechanisms deployed between the nodes (acknowledgment,
etc.), 2- the global topology of the communication (in this paper, an euclidean
lattice), and 3- the variations of local delay, or local computation time, which
is captured in this model by random times to complete each step. This general
problem is primarily motivated today to study the throughput of communication
protocols in large scale data networks.

A. Shvartsman and P. Felber (Eds.): SIROCCO 2008, LNCS 5058, pp. 74–88, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Sharpness: A Tight Condition for Scalability 75

Model. This paper analyzes the process of completion times T for a collection
of tasks which are related together via precedence constraints. As an example
of precedence constraint, a customer can be served in a server only once the
previous customer has completed its service. As in a queueing system, each task,
once it has started, takes a random amount of time to finish, which is called its
weight. As an example, this random weight can represent either the time needed
to exchange a message over a wireless link, a link shared with background data
traffic, or the time needed to access some memory or processing unit. We assume
that the weights of different tasks are independent random variables. The weight
of a given task may occasionally take a large value (for instance, due to local
congestion, server load, etc.); this is represented in the model by the weight
distribution of this task. Hence, for a given initial condition of the system, the
completion time of a task is a random variable that depends on the precedence
relation with other tasks, and the (random) weights for all of them.

We focus here on the case where the collection of tasks is infinite and regular.
Formally, we assume there exists a finite subset of indexes H, which we call the
pattern, and a dimension d ≥ 1 such that the collection of tasks is

{
a × h

∣∣ a ∈ Zd, h ∈ H
}

.

In other words, one can describe this system as a finite set H of tasks to be
done locally, which is reproduced at every position of a d-dimensional lattice.
Moreover, we assume that the precedence constraints that relate all the tasks
of the system together are invariant by translation. Thus, a given task (a × h)
depends on different tasks, some have the same position a in the lattice and a
different index h′ �= h chosen in H, some have different positions in the lattice
and any index h′ in H. The above assumption guarantees that, after translation,
these precedence relations do not depend on the position a.

Main result. In this paper we provide sufficient and necessary conditions for the
following property to hold: for any a ∈ Zd, and any h ∈ H we have

∃M ∈ R such that almost surely lim sup
m→∞

1
m

T(m·a)×h < M , (1)

where Ta×h denotes the completion time for the task (a×h), and (m ·a) denotes
the vector (m · a1, . . . , m · ad) ∈ Zd.

A system that satisfies the above property is called scalable, as this guarantees
that the completion time grows linearly along any direction drawn in the lattice.
Equivalently, the (random) set that contains all tasks completed before t grows
with t according to a positive linear rate, in any given direction. As an example,
if one dimension of Zd denotes the sequence number of a packet to be received,
this condition guarantees a positive throughput for each node in the system,
even if the system itself is infinite.

We prove that scalability, as defined above, is characterized only by two con-
ditions: one that deals with the organization of the precedence relation between
tasks, which is called sharpness, and another condition that deals with the weight

76 A. Chaintreau

distributions, and which only depends on d. We also prove that these two con-
ditions are tight, and in particular that a non-sharp system in dimension d = 2
is never scalable.

Implications. The result above, although it is stated in quite abstract terms,
has some important consequences for the design of distributed systems. First, it
proves that a large class of systems are scalable although they implement some
closed feedback loop among an infinite number of nodes. In particular it shows
that distributed reliable systems can be implemented using only finite buffers in
nodes, while remaining truly scalable. A few examples of this counter-intuitive
fact have already been shown in [1,2]. What is new in this paper is that we
identify the ingredients of such scalability in a systematic way.

Second, under appropriate moment condition on weights, the scalability of a
distributed system is shown to be equivalent to the sharpness condition, which
itself corresponds to a finite number of linear inequalities. Proving scalability is
therefore greatly simplified, and keeping this condition in mind can even help
dimensioning new distributed systems (as happened for instance in [3]).

The assumption that the precedence relation among tasks should be invariant
by translation might seem restrictive at first. It is to some extent necessary since
designing a general model for irregular systems seems difficult, not to mention
finding exact conditions for their scalability. However, we would like to point
here that our model allows for patterns H of arbitrary finite size. It is therefore
sufficient to model systems that are regular only at a certain scale. Moreover,
it is often the case that irregular systems are included in a larger one that is
regular; it is then sufficient to prove scalability by inclusion using stochastic or-
dering. Last, we have assumed that the systems is organized along an euclidean
lattice, although in practice many distributed systems are organized along other
hierarchical topologies. The sharpness condition and the scalability result pre-
sented here can be extended to this case, although it is far beyond the scope
of this paper. The interested reader may found first results on general graphs
reported in [4].

Relation with previous work. Scalability has been addressed in the past for dis-
tributed communication protocols and congestion control [2,5,3] , stream pro-
cessing [6] and computational grids [7]. All these works addressed the issue of
scale for a distributed system where a form of synchronization is implemented
between a large number of nodes. In contrast, our work treats a general case,
and identify for the first time a tight condition that characterizes scalability.

Our results extend recent advances in stochastic network theory on infinite
tandem of queues with general service time distribution and blocking [1]. Rather
than studying a certain feedback mechanism, our results determine which feed-
back systems make the throughput independent of the system size. In addition,
most of the previous results deal only with networks of single server queues. In
contrast, our model applies for any pattern H that contains an arbitrary finite
number of tasks. As an example, it can be used to characterize tandem of any
finite timed event graph. Such generalization is made possible, as in [1], through
a formulation that reminds last-passage percolation time, which allows to use

Sharpness: A Tight Condition for Scalability 77

the powerful framework of subadditive ergodic theory [8]. However, no prior
knowledge of last-passage percolation is needed to prove this result.

The systems we consider follow solutions of Uniform Recurrence Equations
(UREs). UREs were introduced by Karp et al. in [9], where a general condition
for the existence of a solution is presented. UREs have been used in the past
to study synchronization in parallel computation, such as the discrete solution
of differential equations. Our work points in a different direction: for the first
time we study the solutions of general UREs when each step takes a random
amount of time, and we characterize exactly when this solution grows linearly
as its index grows. This is a stronger property as we prove that the sharpness
criterion defined here is strictly stronger than the condition defined in [9] to
classify UREs.

The organization of the paper is as follows. Section 2 presents the model
sketched above in more details. Examples and relations with Uniform Recur-
rence Relations are explained. Section 3 defines the sharpness condition, and
establishes the topological consequence of this criterion on the dependence paths
between the tasks. Section 4 contains the main results of the paper. Section 5
concludes the paper with remarks on possible extensions.

NB: As for UREs, the boundary condition defining the system initial condi-
tion plays an important role in the analysis. In order to focus on the essential
connection between sharpness and scalability, we choose to describe a single
boundary case, corresponding to a system “initially empty”. The result of this
paper can be obtained under more general boundary condition (see [4] Chap.3).

2 Pattern Grid

2.1 Definition

Pattern grids are defined as directed graphs that follow an invariant property.
Their vertices are indexed by both a multidimensional integer (i.e. the “position”
of the task in the d-dimensional lattice Zd) as well as a local index chosen in
a finite set H. Formally, a graph Gpatt = (V , E) is called a pattern grid, with
dimension d and pattern H, if:

– The set of its vertices is V = Zd × H.
– The set of its edges E is invariant by any translation in the lattice Zd;

for all a, a′, v in Zd and h, h′ in H, we have
(a × h) → (a′ × h′) ∈ E if and only if ((a + v) × h) → ((a′ + v) × h′) ∈ E .

In this work, we consider only the case of locally finite graphs (i.e. the number
of edges that leave any vertex is finite). The invariant property implies that the
degrees of vertices in this graph are uniformly bounded. We denote by H the
cardinal of H. When H = 1, the index h plays no particular role and the pattern
grid follows a lattice.

To illustrate this definition, fix all coordinates in the left index (for instance,
all of them null), consider the set of all the associated vertices (e.g. (0, . . . , 0)×H)

78 A. Chaintreau

and all the directed edges starting from any of those vertices. This defines a finite
collection of local tasks to complete and relations between them and a few others
“neighboring” tasks. The pattern grid is what is obtained when one reproduces
this finite object at every site of an euclidean lattice.

2.2 Examples

Due to space constraints, we can only describe a few illustrating examples of the
definitions above.

Infinite tandem of queues. The simplest case of a pattern grid with dimension
2 is an infinite line of single server queues (indexed by k) in tandem, serving
customers (indexed by m). It works as follows: when a customer has completed
its service in server k, he enters immediately the (infinite) buffer of server (k+1),
where it is scheduled according to a first-come-first-served discipline.

Let us consider all the tasks of the type “service of customer m in server
k”, which are naturally indexed by (m, k) ∈ Z2. The relation between them is
essentially described by two precedence rules:

– (m, k) → (m, k − 1) (i.e. the service of m in k cannot start unless its service in
server (k − 1) is completed).

– (m, k) → (m − 1, k) (i.e. the service of m in k cannot start unless the previous
customer has completed its service in k).

Hence this system is well described by a pattern grid with dimension 2, a
pattern containing a single element, and the above edges.

Infinite tandem of queues with blocking. Let us now assume as in [1] that each
server implements two queues (input and output), both with a finite size BIN

and BOUT, such that buffers overflow are avoided by the appropriate blocking of
service. It is not hard to see that such systems can be modeled by a pattern grid
with dimension 2 and pattern H = {i, o}. It contains the following edges:

– (m, k) × i → (m, k − 1) × o (i.e. serving a customer in k requires that he was
forwarded from the previous server (k − 1).)

– (m, k) × o → (m, k) × i (i.e. a customer cannot enter the output buffer before he
has been served by this server.)

– (m, k) × i → (m − 1, k) × i (i.e. serving a customer requires that the previous
customer has been served.)

– (m, k) × i → (m − BOUT, k) × o (i.e. avoid BOUT overflow.)
– (m, k) × o → (m − BIN, k + 1) × i (i.e. avoid BIN overflow.)

Fig.1 describes a portion of the graph defined in the two above examples.
Other mechanisms of feedback fit in the same model. As an example, one may
model TCP connections, with varying windows, organized in tandem and that
implement back-pressure blocking [2].

Sharpness: A Tight Condition for Scalability 79

Fig. 1. Two examples of pattern grids: infinite tandem of single server queue (left), the
same with input-output blocking (right) (i is represented by a white dot, o by a black
dot, we set BIN = 1, BIN = 2)

2.3 Evolution Equation of a Pattern Grid

We now define how the relations between tasks, represented by edges, describe
the evolution of the system: the edge (a×h) → (a′ ×h′) in E represents that the
task (a × h) cannot start unless (a′ × h′) has been completed. Vertex (a′ × h′) is
then called an immediate predecessor of (a × h).

We associate with each vertex (a×h) of the pattern grid a weight denoted by
W(a×h), representing the time needed to complete this task, once it has started.
For instance in the two examples shown above, this weight is the service time of
customer m in server k. It is generally random; sometimes it can be taken equal
to zero (like for (m, k) × o in the second example above, if the delay between
two servers is neglected).

We consider the process of completion time for every task

T =
{

Ta×h ∈ R ∪ {−∞}
∣∣ a ∈ Zd, h ∈ H

}
.

Assuming that a task begins as soon as all its immediate predecessors have been
completed, we have for all a in Zd and h in H:

Ta×h = W(a × h) + max {Ta′×h′ | (a × h) → (a′ × h′) ∈ E} . (2)

As an example, for the infinite tandem of queues described above it becomes
Lindley’s equation:

T(m,k) = W(m, k) + max
(
T(m,k−1), T(m−1,k)

)
.

Relation with UREs. It is easy to see that another way to characterize the set E
of edges in a pattern grid is via a collection of dependence sets : a finite collection
(Δh,h′)h,h′∈H of subsets of Zd indexed by H2, such that

80 A. Chaintreau

(a × h) → (a′ × h′) ∈ E if and only if (a′ − a) ∈ Δh,h′ . (3)

Note that, as the graph is supposed locally finite, all these subsets are necessarily
finite. Following this definition, Eq.(2) may be rewritten as

Ta×h = W(a × h) + max
{

T(a+r)×h′
∣∣ r ∈ Δh,h′ , h′ ∈ H

}
. (4)

which defines a set of Uniform Recurrence Equations (UREs), already intro-
duced in [9]. These systems of equations have been studied as they characterize
dependencies between computation tasks in a parallel computation. The article
by Karp et al. is motivated by the numerical resolution of discrete version of
classical differential equations.

Boundary condition. Let beg be chosen in H. We assume that the system starts
to complete the task (0 × beg) at time t = 0, and that the system is “initially
empty” (i.e. all tasks (a × h) such that a has at least one negative coordinate
are supposed to be initially complete). In other words, we introduce G[0]

patt the
pattern grid where the weight of any task (a × h) is replaced by −∞ whenever
a has at least one negative coordinate. The process T is then a solution of the
following system of equations:

{
T0×beg = W(0 × beg) ,
Ta×h = W(a × h) + max

(a×h)→(a′×h′)∈E
Ta′×h′ , for (a × h) �= (0 × beg). (5)

One can immediately check that the following defines a solution of Eq.(5):

∀a ∈ Zd, h ∈ H , Ta×h = sup
{

W(π)
∣∣∣∣ π a path in G[0]

patt

π : a × h � 0 × beg

}
, (6)

where a path π is defined following the natural definition of paths in directed
graph, and its weight W(π) is the sum of the weights of all its vertices. The
supremum is taken over all possible paths, where we include paths that contain
a single vertex and no edge.

Note that whenever a contains a negative coordinate, the supremum is equal
to −∞. When the precedence relation between tasks is acyclic (i.e. when the
system has no deadlock, see the next section) one can show by induction that
this solution is unique for every task (a×h) for which a path exists in the above
supremum.

One may rephrase Eq.(6) as “The completion time of task (a × h) is the
maximum sum of weights along a dependence path leading from (a × h) back to
the origin task (0×beg).” By an analogy with models from statistical physics, this
may be called the last-passage percolation time in (a×h). It is important to note
that, as in percolation model, these variables exhibit super-additive property,
such that one can benefit from the subadditive ergodic theorem which generalizes
the law of large number [8].

Sharpness: A Tight Condition for Scalability 81

3 Sharpness

In this section, we characterize the properties of the paths in the pattern grid
with a single condition: the sharpness criterion. We first prove under this condi-
tion that the combinatorial properties of these paths follow the connected subsets
of a lattice (also called lattice animals [10]). When this condition is not verified,
we show in dimension 2 that the combinatorial properties of these paths are
radically different.

3.1 Definitions

Dependence graph, simple cycle. For any pattern grid, we define the asso-
ciated dependence graph as the following directed multi-graph, where all edges
are labeled with a vector in Zd:{

Its set of vertices is H.
Its set of edges is {h → h′ with label r | r ∈ Δh,h′ , h, h′ ∈ H} .

Note that according to this definition, h → h′ is an edge of the dependence
graph with label r if and only if for all a ∈ Zd, (a × h) → ((a + r) × h′) is in E .
We represent the dependence graph associated with the two examples of 2.2 in
Figure 2.

(0,−1)

(−1, 0)

(−BOUT, 0)

i

o

(0, 0)(−1, 0)

(0, −1)

(−BIN, 1)

Fig. 2. Two examples of dependence graphs: for an infinite tandem (left), same with
input and output blocking (right)

A path in the dependence graph follows the natural definition of a path in a
graph. Its size is given by the number of vertices it contain (the same vertex can
be included multiple times); its associated vector is the sum of the label for the
edges that it contains.

A path drawn in the dependence graph which begins and ends in the same
vertex h of H is called a cycle. It is a simple cycle if it does not contain any
other cycle. In other words, all vertices visited by this cycle are distinct except
the first and last one, which are necessarily the same. As a consequence, a simple
cycle contains at most H +1 vertices (including multiplicity), and the collection
of simple cycles is finite.

Sharpness condition. We denote by C the set of all vectors associated with a
simple cycle in the dependence graph. For two vectors u and v in Zd, <u, v>
denotes their scalar product, <u, v> =

∑d
i=1(ui · vi).

82 A. Chaintreau

Condition 1. The following conditions are equivalent

(i) There exists s ∈ Zd, such that ∀r ∈ C , <r, s> < 0 .
(ii) There exists s ∈ Zd, such that ∀r ∈ C , <r, s> ≤ −1 .
(iii) There exists a hyperplane of Rd such that all vectors in C are contained in

an open half-space defined by this hyperplane.

A pattern grid is then called sharp. A vector s satisfying (ii) is called a sharp
vector.

Condition (iii) may be seen as a rewriting of (i) in geometric terms, (i) implies
(ii) since the family C contains a finite number of vectors. In practice, to deter-
mine whether a sharp vector exists, one has to extract all the simple cycles in
the dependence graph, and then to solve a finite system of linear inequalities.

As an example s = (1, 1) is a sharp vector for the infinite tandem in Sec-
tion 2.2. For the second example, s = (2, 1) is a sharp vector since we obviously
assume BIN + BOUT ≥ 1.

Geometric interpretation. Let us define the cone Cone(C) containing all linear
combinations of elements in C with non-negative coefficients. Assuming that
the pattern grid is sharp, this cone intersects one hyperplane only in 0 and is
otherwise contained in one of the open half space defined by this hyperplane. In
other words, the angle of this cone should be acute. By analogy, the pattern grid
is then called “sharp”.

(d)

(a) (b) (c)

Fig. 3. Geometric representation: (a) and (b) represent families that admit a sharp
vector, (c) and (d) families that do not admit such a vector

Some examples are shown in Figure 3 for the case of dimension 2. Different
families C have been represented, containing from 3 to 6 vectors. The cone gen-
erated by positive linear combination of this family is shown in gray. We have
shown in black the directions that can define a sharp vector, for the cases (a)
and (b), where such a vector may be found. Case (c) shows an example of family
containing opposite vectors, making it impossible to find a sharp vector. In the
case (d), the cone created by positive linear combination of vectors is the whole
space R2, such that, again, no sharp vector may be found. We prove in §3.3, that
these cases depict all possible situations for dimension 2.

Sharpness: A Tight Condition for Scalability 83

Relation with deadlock avoidance. A loop in the graph defining the pattern
grid corresponds to a deadlock of the system, since it denotes that a task in-
directly depends on its own completion to start. Karp et. al proved necessary
and sufficient conditions to avoid such deadlock, and showed that they charac-
terize system of Uniform Recurrence Equations where an explicit solution can
be constructed [9]. Note that a deadlock corresponds to a cycle drawn in the
dependence graph whose associated vector is null. In other words, the system
has no deadlock if and only if 0 /∈ C.

One may immediately observe that sharpness implies deadlock avoidance
(e.g. as a direct consequence of (i)). It is however less obvious that the sharpness
condition is indeed strictly stronger than deadlock avoidance (see Section 4.2).

3.2 Why Is a Sharp Vector Useful ?

The main consequence of sharpness is that one can define a direction in the
grid so that dependence paths between tasks remain close to that direction. It
comes from the following fact: a path in the dependence graph is more or less
a concatenation of a large number of cycles. We can then limit the size of a
dependence path based only on its direction in the grid.

Lemma 1. Suppose that a pattern grid admits a sharp vector s. There exist two
constants B, C such that, for any path π : (a × h) � (a′ × h′)

|π| ≤ B + C · <a − a′, s> .

Proof. Let us introduce the residue of a pattern grid, for a sharp vector s.

Res = max
{
(<r, s>)+| r assoc. with π and |π| ≤ H

}
.

It is a finite maximum by definition, because the dependence graph contains a
finite number of vertices and edges. Note that for the case where the motif set
H contains a single element, this residue is null, because every path is a cycle.
The above result is implied by the following result on paths in the dependence
graph: for any path π associated with r, we have |π| ≤ H (1 + Res− <r, s>) .

We will prove this fact by induction on the size of π. First, from the definition
of the residue, this result holds trivially for any path π whose size is less than
or equal to H .

If π has a size strictly larger than H , then it contains a cycle, and hence a
simple cycle, σ. We can write π = π1 ◦σ ◦π2. The path π1 ◦π2 is well defined, as
the vertex ending π1 is also the one starting π2. The path π1 ◦π2 has necessarily
a smaller size than π. If we assume by induction that it satisfies the result of the
theorem, we can deduce:

|π| ≤ |π1 ◦ π2| + |σ| − 1 ≤ |π1 ◦ π2| + H + 1 − 1
≤ H(1 + Res− <rπ1 + rπ2 , s>) + H
≤ H(1 + Res− <rπ1 + rπ2 , s>) − H <rσ, s> , (since <rσ, s> ≤ −1)
≤ H(1 + Res− <rπ, s>) .

84 A. Chaintreau

This bound only depends on the positions in the grid of the two extreme
nodes of this path. Hence this result provides an upper bound on the size of
any dependence path between two given tasks in the pattern grid. We need
slightly more than that: we aim at bounding the maximum weight of any path
between two given nodes. Hence we have to capture in addition the combinatorial
property of the sum of weights found in such paths.

We can address this second problem as follows: Since H is a finite set, we can
construct a one-to-one correspondence between Zd ×H and Zd. Let us introduce
the following definition, we say that a subset of Zd is lattice-connected if it is
connected according to the neighbor relation of an undirected lattice. A subset
of Zd × H is called lattice-connected if its associated subset in Zd (by the above
correspondence) is lattice connected.

Lemma 2. Suppose that a pattern grid admits a sharp vector s. There exist two
constants B, C such that, for any path π : (a × h) � (a′ × h′)

∃ξ a lattice-connected set, such that π ⊆ ξ and |ξ| ≤ B + C · <a − a′, s> .

Proof. The proof is an application of Lemma 1. We introduce the radius of a
pattern grid as the finite maximum

Rad = max {||r||∞ for r ∈ Δh,h′ , h, h′ ∈ H} .

It is the maximum difference on one coordinate between vertices a×h and a′×h′

that are connected by an edge in the pattern grid. One can show that any path
π may be augmented into a lattice-connected subset which contains at most
|π| · (H + d · Rad). A formal version of this argument, based on a one-to-one
correspondence between Zd × H and Zd is detailed in [4].

This turns out to be a very powerful tool, because the class of lattice-connected
subset, also known as lattice animals, have been well characterized from a com-
binatorial and probabilistic standpoint [10],[11].

3.3 Why Is a Sharp Vector Necessary ?

Focusing on dimension d = 2, we describe properties of non-sharp pattern grids.
These results are only used later to prove that sharpness is a tight condition of
scalability. We start by a result showing that a non-sharp pattern grid always
exhibits some pathological case: the proof of this lemma may be found in [12].

Lemma 3. If we consider a family of vectors C in Z2 that does not admit a
sharp vector, then one of the following statements is true:

(i) It contains the vector 0.
(ii) It contains two opposite vectors: there exist e and f in C such that

∃α ∈ R, α > 0 , such that e = −α · f .

(iii) It contains a generating triple: there exist e, f, g in C such that{
<e, f> < 0 <e, g> < 0
<ẽ, f> > 0 <ẽ, g> < 0 , with <ẽ, e> = 0 .

Sharpness: A Tight Condition for Scalability 85

Let us define a pattern grid as irreducible if its dependence graph is strongly
connected (i.e. there always exists a path leading from h to h′, for any h and h′).
A non-irreducible pattern grid can be decomposed using the strongly connected
components of the dependence graph, and studied separately. The next result,
a consequence of Lemma 3 proves that dependence paths in non-sharp pattern
grid cannot be bounded as in Lemma 1. Due to space constraint, we omit the
proof which may be found in Appendix B.2 of [12].

Corollary 1. We consider a pattern grid, irreducible, with dimension d = 2
that does not admit a sharp vector. We pick an arbitrary vertex of this graph
as an origin. There exists a vertex v × h, such that we can build a path of size
arbitrary large from v × h to the origin.

4 Scalability

In this section, we establish the main result of this paper: under a moment
condition, a distributed system represented by a sharp pattern grid is scalable.
Moreover, we prove that the rate of completion along any direction converges to
a deterministic constant. We then prove that the sharp condition is necessary for
scalability, at least for dimension 2, when one avoids degenerate cases. A simple
example is provided to illustrate how sharpness is a stronger condition than the
one defined in [9].

4.1 The Sharp Case

Moment condition. The weight of a × h is supposed to follow that depends only
on h and is upper bounded by s̄, for the stochastic ordering,

∀u ∈ R , we have P [W(a × h) ≥ u] ≤ P [s̄ ≥ u] .

Condition 2. We assume
∫ +∞

0
P (s̄ ≥ u)1/ddu < ∞ .

Condition 2 implies E[(s̄)d] < +∞. It is implied by E[(s̄)d+ε] < +∞ for any
positive ε, but it is slightly more general.

Theorem 1. Let Gpatt be a pattern grid satisfying Condition 1 and 2, then

(i) The system is scalable.

∃M ∈ R such that almost surely lim sup
m→∞

1
m

T(m·a)×h < M .

(ii) If there exists a path π : a × beg � 0 × beg with non-negative coordinates
(i.e. such that W(π) �= −∞ and Ta×beg �= −∞), then

lim
m→∞

T(m·a)×beg

m
= l ∈ R almost surely and in L1.

86 A. Chaintreau

As a consequence, the throughput of an infinite number of queues organized in
tandem is positive, with or without blocking, whenever Condition 2 is verified
by the service time. Condition 2 is almost tight since one can build a counter-
example when E[(s̄)d] = ∞ [1].

Proof. We prove a slightly more general result, that for any a there exists M ∈ R

such that, almost surely

max
h,h′∈H

lim sup
m→∞

1
m

(
sup

π: ((m·a)×h)�(0×h′)
W(π)

)
≤ M < +∞

Theorem 1.1 in [11] tells us that in a lattice Zd, where weights satisfy Con-
dition 2, the maximum weight of a lattice-connected set ξ grows linearly: There
exists N ∈ R such that, when n → ∞,

1
n

(
max

ξ latt. conn., |ξ|=n , 0∈ξ
W(ξ)

)
→ N < ∞ almost surely and in L1.

For any fixed h and h′, as a consequence of Lemma 2, a path π leading from
((m · a) × h) to (0 × h′) is contained in a lattice connected subset ξ with size
smaller than

|ξ| ≤ (H2 + d · Rad · H)(1 + Res+ m · <a, s>) ,

where s is a sharp vector for this grid. All these connected subset contain in
particular 0 × h′. The weight of a path is then upper bounded by the maximum
weight of a connected subset that contains this fixed point. We deduce

lim sup
m→∞

1
m

sup
π: ((m·a)×h)→(0×h′)

W(π) ≤ (H2 + d · Rad · H) · <a, s> · N < ∞ .

The proof of (ii) relies on the sub-additive ergodic theorem. It is omitted due
to space constraint and may be found in the Appendix A of [12].

4.2 The Non-sharp Case

Let us first illustrate with an example the case of a non-sharp pattern grid. The
pattern grid represented in Figure 4 avoids deadlock since one cannot build a
cycle in the dependence graph associated with a null vector. It is not sharp as
two opposite vectors are associated with cycles in the dependence graph.

As shown in Figure 4 on the right, one can construct a path from any vertex
to the origin by following first the top left direction (remaining only over black
vertices), following an edge towards a white vertex before crossing the y-axis,
then following a right bottom line, remaining on white vertices. It can be seen
that starting from coordinate (m, k), the length of this path for large m and k is
of the order of (m + k)2. This proves that the T(m,0)×b ≈ m2, and thus that the
growth rate associated with this direction is more than linear (i.e. its associated
completion rate in this direction is zero).

Sharpness: A Tight Condition for Scalability 87

(1, −1) (0, −1)

(0, 0)
(−1, 1)

Fig. 4. Example of a pattern grid that avoids deadlock but does not satisfy the sharp-
ness condition: represented via pattern grid (left), dependence graph (middle), shape
of a path with a “super-linear” size (right)

We now prove that the phenomenon found above is not an exceptional case
but that it always occurs when the sharp condition is not verified. Just like
for the study made in Section 3.3, we consider irreducible pattern grid with
dimension 2. The proof of the following result is in Appendix B.3 in [12].

Theorem 2. Let Gpatt be an irreducible pattern grid with dimension 2 that does
not admit a sharp vector and T be any solution of Eq.(5).

We assume that there exists a, with only positive coordinates, and h ∈ H,
such that a path a × h � 0 × h exists and always has non-negative coordinates.
We also assume that all weights are non negative and not identically null, then

∃a′ ∈ Zd , lim
m→∞

T(m·a′)×h

m
= +∞ almost surely and in expectation.

5 Concluding Remarks

In this paper we have proved a general result on the scalability of distributed
systems. It was obtained in two steps. First, we have proved that the dependence
paths in a general precedence relation can be bounded by a scalar product when-
ever a sharp vector exists. Second, the completion of tasks associated with the
system have been analyzed taking advantage of subadditive ergodic theory. The
scalability result implies that the random set that contains all completed tasks
grows linearly with time, in any direction. This work refines the classification of
distributed computing systems introduced in [9] via Uniform Recurrence Equa-
tions (UREs).

Some aspects of this method have not been included in the paper, due to space
constraint. Let us now review them briefly. All the results presented here can be
shown for the case of a random pattern grid (i.e. where the collection of edges
is random, with a distribution invariant per translation). Similarly, the same
result can be obtained with different boundary conditions, allowing to construct
stationary regimes and analyze stability of large scale system. Another important
extension that we could not describe in this paper is when the topology does

88 A. Chaintreau

not follow a lattice but different types of infinite graphs, such as trees. We refer
to [4] for a first account of these extensions, which will be described more in
future work. In a more longer term, we wish to study how other synchronization
between nodes (like the presence of conflicting services) may impact scalability.

References

1. Martin, J.: Large tandem queuing networks with blocking. Queuing Systems, The-
ory and Applications 41, 45–72 (2002)

2. Baccelli, F., Chaintreau, A., Liu, Z., Riabov, A.: The one-to-many TCP overlay: A
scalable and reliable multicast architecture. In: Proceedings of IEEE INFOCOM,
vol. 3, pp. 1629–1640 (2005)

3. He, J., Chaintreau, A.: BRADO: scalable streaming through reconfigurable trees
(extended abstract). In: Proceedings of ACM Sigmetrics, pp. 377–378 (2007)

4. Chaintreau, A.: Processes of Interaction in Data Networks. PhD thesis, INRIA-
ENS (2006),
http://www.di.ens.fr/∼chaintre/research/AugustinChaintreauPhD.pdf

5. Jelenkovic, P., Momcilovic, P., Squillante, M.S.: Buffer scalability of wireless net-
works. In: Proceedings of IEEE INFOCOM, pp. 1–12 (2006)

6. Xia, C., Liu, Z., Towsley, D., Lelarge, M.: Scalability of fork/join queueing networks
with blocking. In: Proceedings of ACM Sigmetrics, pp. 133–144 (2007)

7. Chen, L., Reddy, K., Agrawal, G.: Gates: A grid-based middleware for processing
distributed data streams. In: HPDC 2004. Proceedings of the 13th IEEE Inter-
national Symposium on High Performance Distributed Computing, pp. 192–201
(2004)

8. Kingman, J.: Subadditive ergodic theory. Annals of Probability 1(6), 883–909
(1973)

9. Karp, R.M., Miller, R.E., Winograd, S.: The organization of computations for
uniform recurrence equations. J. ACM 14(3), 563–590 (1967)

10. Gandolfi, A., Kesten, H.: Greedy lattice animals II: linear growth. Annals Appl.
Prob. 1(4), 76–107 (1994)

11. Martin, J.: Linear growth for greedy lattice animals. Stochastic Processes and their
Applications 98(1), 43–66 (2002)

12. Chaintreau, A.: Sharpness: a tight condition for scalability. Technical Report CR-
PRL-2008-04-0001, Thomson (2008)

http://www.di.ens.fr/~chaintre/research/AugustinChaintreauPhD.pdf

Discovery of Network Properties with

All-Shortest-Paths Queries

Davide Bilò1, Thomas Erlebach2, Matúš Mihalák1, and Peter Widmayer1

1 Institute of Theoretical Computer Science, ETH Zurich, Switzerland
{dbilo,mmihalak,widmayer}@inf.ethz.ch

2 Department of Computer Science, University of Leicester, United Kingdom
te17@mcs.le.ac.uk

Abstract. We consider the problem of discovering properties (such as
the diameter) of an unknown network G(V, E) with a minimum number
of queries. Initially, only the vertex set V of the network is known. Infor-
mation about the edges and non-edges of the network can be obtained
by querying nodes of the network. A query at a node q ∈ V returns the
union of all shortest paths from q to all other nodes in V . We study the
problem as an online problem – an algorithm does not initially know the
edge set of the network, and has to decide where to make the next query
based on the information that was gathered by previous queries. We
study how many queries are needed to discover the diameter, a minimal
dominating set, a maximal independent set, the minimum degree, and
the maximum degree of the network. We also study the problem of decid-
ing with a minimum number of queries whether the network is 2-edge or
2-vertex connected. We use the usual competitive analysis to evaluate the
quality of online algorithms, i.e., we compare online algorithms with op-
timum offline algorithms. For all properties except maximal independent
set and 2-vertex connectivity we present and analyze online algorithms.
Furthermore we show, for all the aforementioned properties, that “many”
queries are needed in the worst case. As our query model delivers more
information about the network than the measurement heuristics that are
currently used in practise, these negative results suggest that a similar
behavior can be expected in realistic settings, or in more realistic models
derived from the all-shortest-paths query model.

1 The Problem and the Model

Dynamic large-scale networks arise in our everyday life naturally, and it is no
surprise that they are the subject of current research interest. Both the natu-
ral sciences and the humanities have their own stance on that topic. A basic
prerequisite is the network itself, and thus, before any study can even begin,
the actual representation (a map) of a network has to be obtained. This can
be a very difficult task, as the network is typically dynamic, large, and the ac-
cess to it may be limited. For example, a map of the Internet is difficult to
obtain, as the network consists of many autonomous nodes, who organize the

A. Shvartsman and P. Felber (Eds.): SIROCCO 2008, LNCS 5058, pp. 89–103, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

90 D. Bilò et al.

physical connections locally, and thus the network lacks any central authority or
access point.

There are several attempts to obtain an (approximate) map of the Internet. A
common approach, on the level of Autonomous Systems (ASs), is to inspect rout-
ing tables and paths stored in each router (passive measurement) or directly ask
the network with a traffic-sending probe (active measurement). Data obtained
by such measurements are used in heuristics to obtain (approximate) maps of
the Internet, see e.g. [1,2,3,4].

As performing such measurements at a node is usually very costly (in terms
of time, energy consumption or money), the question of minimizing the num-
ber of such measurements arises naturally. This problem was formalized as a
combinatorial optimization problem and studied in [5]. The map of a network
(and the network itself) is modeled as an undirected graph G = (V, E). The
nodes V represent the communication entities (such as ASs in the Internet) and
the edges represent physical communication links. A measurement at a node
v ∈ V of the network is called a query at v, or simply a query v. Each query q
gives some information about the network. The network discovery problem asks
for the minimum number of queries that discover the whole network. In [5] the
layered-graph query model (LG for short) is defined: a query q returns the union
of all shortest paths from q to every other node. In this paper we refer to the
LG query model as the all-shortest-paths query model. Network discovery is an
online problem, where the edges and non-edges (a pair {u, v} is a non-edge, if
it is not an edge) are initially not known and an algorithm queries vertices of V
one by one, until all edges and non-edges are discovered.

Having a map of a network G at our disposal, various aspects of G can be
studied. For example, the routing aspects of G are influenced by the diameter,
average degree, or connectivity of G. Other graph properties that are studied in
the networking community include, for example, a maximal/maximum indepen-
dent set, minimal/minimum dominating set, shell index, the decision whether
the graph is bipartite, power-law, etc. All these properties can be computed from
the map of G.

If only a single parameter of a network is desired to be known, obtaining the
whole map of the network may be too costly. In this work we address the problem
of computing (an approximation of) network properties (such as the diameter
of G) in an online way: given an unknown network (only the nodes are known
in the beginning), discover a property (or an approximation of a property) of
the network (graph) with a minimum number of queries. The properties that we
address in this paper are the diameter of the graph, a minimal dominating set,
a maximal independent set, minimum degree, maximum degree, edge connectiv-
ity and vertex connectivity. We use standard graph-theoretic terminology and
notation, as it is described for example in [6].

We assume the all-shortest-paths query model, i.e., a query q returns the
union of all shortest paths from v to every other node. The result of the query
q can be viewed as a layered graph: all the vertices at distance i from q form
a layer Li(q), and the query returns all information between any two layers,

Discovery of Network Properties with All-Shortest-Paths Queries 91

v1

v2

v3

v4

v5

v6
v7

v1

v2

v3

v4

v5

v6

v7

L1 L2 L3

Fig. 1. A graph G (left) and the result of a query at node v1 as a layered graph (right)

i.e., if u and v are from different layers, then the query returns whether {u, v} is
an edge or a non-edge. We depict the result of a query graphically as in Fig. 1.
For simplicity we sometimes write Li instead of Li(q), if it is clear from the
context which node is queried. We denote by Eq and Eq the set of edges and
non-edges, respectively, that are discovered by query q. In the all-shortest-paths
query model, Eq is the set of edges whose endpoints have different distance from
q, and Eq is the set of non-edges whose endpoints have different distance from q.
By EQ and EQ we denote the set of edges and non-edges that are discovered
by queries Q, i.e., EQ =

⋃
q∈Q Eq and EQ =

⋃
q∈Q Eq. The graph GQ is the

graph on V with the edge set EQ. Finally, we denote by comp(G, Q), the set of
all graphs G′ with vertex set V containing all the edges in EQ and all non-edges
in EQ.

It is easy to observe that querying all vertices of G discovers all the edges
and non-edges of G and thus any property of the graph can be derived from this
information. We are interested in algorithms that deliver minimum-sized query
sets that reveal the necessary information about the sought network property.
An online algorithm for the (approximate) discovery of a network property is
called c-competitive, if the algorithm delivers, for any input graph G, a query set
Q of size at most c · Opt , where Opt is the optimum number of queries that
discover the (approximation of the) property. By an approximate discovery of
a property we understand a computation of a value A which is “close” to the
actual value O of the property. We require A ≥ O, if we want to approach O from
above (we call the property a minimization property), or A ≤ O, if we want to
approach O from below (we call the property a maximization property). We will
treat the diameter as a minimization property. We call an online algorithm a ρ-
approximation algorithm for the problem of discovering a minimization property
if for any input graph G it discovers a ρ-approximation of the property, i.e., if for
the numerical value A returned by the algorithm, and the actual value O of the
property, we have O ≤ A ≤ ρ ·O. For example, a ρ-approximation, c-competitive
algorithm for the diameter discovery problem is an algorithm that discovers a
graph GQ for which the diameter diamGQ is at most ρ · diamG, and queries at
most c times more queries than an optimal offline ρ-approximation algorithm.

Related Work. Deciding exactly (and deterministically) a graph-theoretic prop-
erty of a given graph where the measure of quality is the number of accessed
entries in the adjacency matrix of the graph is a well understood area. Rivest
and Vuillemin [7] show that any deterministic procedure for deciding any non-
trivial monotonous n-vertex graph property must examine Ω(n2) entries in the
adjacency matrix representing the graph. Each such examination of an entry can

92 D. Bilò et al.

be seen as a query. Our approach introduces a general concept where other types
of queries can be considered. We study the case where the query at a vertex re-
turns all shortest paths from that vertex. This is, however, not the only possible
query model to study, and we expect that other interesting query models will
be studied following this concept. Moreover, in contrast to the previous work,
we study the problem as an online problem, and thus evaluate the quality of
algorithms using the competitive ratio.

An active and related field of research is the well-established area of property
testing, in which a graph property is asked to be probabilistically examined with
possibly few edge-queries on the edges of the graph. The aim of such property-
testing algorithms is to spend time that is sub-linear or even independent of the
size of the graph. In property testing, a graph possessing an examined property
P shall be declared by the algorithm to have property P with probability at least
3/4, and a graph that is “far” from having property P should be declared by
the algorithm not to have property P with probability at least 3/4. A survey on
property testing can be found for example in [8]. Our work differs from property
testing in the type of query we make, and in that we consider deterministic
strategies.

The all-shortest-paths query model was introduced by Beerliová et al. for
studying the mapping process of large-scale networks [5]. The authors studied
the problem of discovering all edges and all non-edges of an unknown network
with possibly few queries. They presented, among other results, a randomized
O(

√
n log n)-competitive algorithm, and lower bounds 3 and 4/3 on the compet-

itive ratio of any deterministic and randomized algorithm, respectively. A query
set that discovers the edges and non-edges of the network is also called a resolv-
ing set and the minimum-size resolving set is called a basis of the underlying
graph, and the size of the basis is the dimension of the graph. A graph-theoretic
and algorithmic overview of this topic can be found in [9] and [10], respectively.

Our Contribution. We consider several graph properties in the property discov-
ery setting with the all-shortest-paths query model. We first study the discovery
of the diameter of an unknown graph G. We present and use a new technique
of querying an “interface” between two parts of a graph G. Using k “interfaces”
leads to a (1+ 1

k+1)-approximation algorithm for the discovery of the diameter of
G. The “interface” is in our case a layer of vertices which are at the same distance
from an initial query q0. Considering the competitive ratio as well, and setting
k = 1, we can present a (3

2 + 2p−1
�)-approximation, (n

2p)-competitive algorithm,
where � is the maximum distance from q0 (which is at least half of the diameter
of G), and p is a parameter, p < �/4. We present a lower bound

√
n − 1/2 for

the competitive ratio of any algorithm computing a minimal dominating set.
We also present an algorithm which queries at most O(

√
d · n) vertices, where

d is the size of a minimum dominating set of G. For the problem of finding a
maximal independent set we show a lower bound

√
n on the competitive ra-

tio of any algorithm. We further study the discovery of 2-edge and 2-vertex
connectivity of G, and show a lower bound n/2 on the competitive ratio of any
algorithm for discovering a bridge or an articulation vertex of G. We also present

Discovery of Network Properties with All-Shortest-Paths Queries 93

an n/2-competitive algorithm which discovers whether G is 2-edge connected.
For the problem of discovering the maximum and the minimum degree of G, we
present lower bounds n/2 and n/2, respectively, for the competitive ratios of any
algorithm.

2 Discovering the Properties

In the following we use a common approach to the (approximate) discovery of a
graph property of a given graph G: select a query set Q such that the resulting
graph GQ has the same (or approximately similar) graph property.

2.1 Discovering the Diameter

Following the general approach, we want to find a (possibly) small query set
Q, such that the resulting graph GQ = (V, EQ) has a diameter which is a good
approximation of the diameter of G.

It has been previously observed [11] that a single query q ∈ V yields a 2-
approximation of the diameter of G. To see this, let q be a vertex of G. Let v
be the vertex with the maximum distance from q. Let � denote this distance,
i.e., d(q, v) = �. Clearly, diam ≥ �. Also, for any two nodes u, v ∈ V , d(u, v) ≤
d(u, q) + d(v, q) ≤ 2�. Thus, the diameter of Gq is at most 2�, and therefore it is
at most twice the diameter of G.

The following example shows that in general, unless we discover the whole
network, we cannot hope for a better approximation than 2. Consider two graphs:
G1 = Kn, the complete graph, and G2 = Kn \ {u, v}, the complete graph minus
one edge {u, v}. The diameter of G1 is 1, and the diameter of G2 is 2. For any
query q, but u or v, the result looks all the same, a star graph centered at
q. Thus, we know that the diameter is at most 2, but cannot obtain a better
approximation until all the vertices (but one) are queried. As any deterministic
algorithm can be forced to query V \ {u, v} first, the example shows that there
is no deterministic (2− ε)-approximation algorithm with less than n− 1 queries.

If the diameter of the graph is larger than two (e.g. a growing function in n,
such as log n), the following strategy guarantees a better approximation ratio.
We first make an arbitrary query q ∈ V . This splits the vertices of V into
layers Li, where Li contains the vertices at distance i from q. As a next step
we query all vertices at layer Lk (we will show that k = 3

4� is a good choice).
See Fig. 2 for an illustration of the upcoming discussion. From the information
that we gain after querying all vertices in Lk we want to improve the upper
bound or the lower bound for the diameter, and thus the approximation ratio
of our algorithm. Thus, the algorithm computes the diameter of G′ := G{q}∪Lk

(the discovered part of G), and reports it as the approximate solution. In the
following we discuss the quality of such an approximation. Let u and v be the
vertices whose distance is the diameter of G′.

If a shortest path between u and v goes via vertices of the queried layer Lk, the
actual distance between u and v will be discovered in G′ (and the approximation

94 D. Bilò et al.

q

Lk

u v L�

q

Lk

u

v

q′

s
P

Fig. 2. The initial query q splits the vertices of G into � layers L1, L2, . . . L�. The
distance d(u, v) between any two nodes u, v ∈ V is at most d(u, q) + d(q, v) ≤ 2�, but
can be shorter if edges within the same layer are present.

ratio will be 1). Thus, we concetrate on the cases where the shortest path between
u and v does not go via Lk.

Case 1. If u and v lie both within layers L1, . . . , Lk−1, then clearly dG′(u, v) ≤
2(k − 1). This type of nodes guarantees an approximation ratio of 2(k − 1)/� (as
the diameter of G is at least �).

Case 2. If both u and v lie within layers Lk+1, . . . , L�, and every shortest path
in G between u and v goes via vertices of layers Lk+1, . . . , L�, we can obtain
the following bounds on dG(u, v). Trivially, dG(u, v) ≤ dG(u, q′) + dG(q′, v) =
dG′(u, q′) + dG′(q′, v), for any q′ ∈ Lk ∪ {q}. Let P be a shortest path in G
between u and v. Let s ∈ V be a vertex on P that is closest to Lk and let q′ be
a vertex in Lk which is closest to s. We obtain dG(q′, u) ≤ dG(q′, s)+ dG(s, u) ≤
(�−k)+dG(s, u), and similarly dG(q′, v) ≤ dG(q′, s)+dG(s, v) ≤ (�−k)+dG(s, v).
Thus, dG(q′, u)+dG(q′, v) ≤ 2(�−k)+dG(s, u)+dG(s, v) = 2(�−k)+dG(u, v). As
dG(q′, u) = dG′(q′, u) and dG(q′, v) = dG′(q′, v), we obtain dG′(q′, u)+dG′(q′, v)−
2(�−k) ≤ dG(u, v) ≤ dG′(q′, u)+dG′(q′, v), and the approximation ratio obtained
for this type of vertices is at most dG′(q′,u)+dG′(q′,v)

max{�,dG′(q′,u)+dG′ (q′,v)−2(�−k)} . We now distin-
guish two cases. First, if dG′(q′, u)+dG′(q′, v)−2(�−k) ≤ �, then the approxima-
tion ratio is at most �+2(�−k)

� = 3�−2k
� . Second, if dG′(q′, u)+dG′(q′, v)−2(�−k) >

�, then the approximation ratio is of the form x
x−2(�−k) , which is maximized

(under the condition that x − 2(� − k) ≥ �) for x = � + 2(� − k). Thus the
approximation ratio is at most 3�−2k

� .
Hence, taking all cases into account, the approximation ratio of the algorithm

is max{1, 2(k−1)
� , 3�−2k

� }. To minimize the approximation ratio, we need to set
2(k − 1) = 3� − 2k, i.e., k = 3�+2

4 , which leads into diamGQ/diamG ≤ 3
2 − 1

� . We
assume, for simplicity of presentation, that every fractional computation results
in an integral number (such as the query level k = 3�+2

4). In reality one has to
round the numbers, which can “shift” the queried layer by half, i.e., |[k]−k| ≤ 0.5
(by [k] we denote the rounding of k). This results in a small additive error of order
1
� in the approximation ratio of the diameter. Observe that this error approaches
zero, as � (and the diameter) grows with n. For simplicity we sometimes omit
these small rounding errors in the statements about approximation ratios.

Discovery of Network Properties with All-Shortest-Paths Queries 95

It is not difficult to imagine that querying more layers leads to a better ap-
proximation of the diameter. This is indeed the case. We only state the theorem
here. The proof of this more general statement can be found in [12].

Theorem 1. Let � be the maximum distance from an initial query q to a vertex
of G. Let Q = {q}∪Lk1 ∪Lk2 ∪ . . . Lks , s ≥ 1, ki < ki+1, i = 1, . . . , s − 1, where
ki = �/2 + i · �

2(s+1) . Then the query set Q leads to a graph GQ for which the
diameter diamGQ is a 1 + 1

s+1 approximation of the diameter of G.

So far we have been mainly concerned with the quality of the approximation but
we did not consider the number of queries we make. A problem of the previous
algorithm is that the right choice of layer Lk where we make the queries may
result in many queries (say, n−� in the worst case, if the layer Lk contains almost
all vertices of G). If we want to maintain a bounded competitive ratio, we have
to be careful about the choice of Lk, which leads to a bi-criteria optimization
problem.

Bi-criteria Optimization. To keep some control over the number of queries, a
natural choice is to allow some freedom in the choice of the layer Lk. Thus, we
do not set k = 3

4�+0.5, but parametrize the choice of k and allow k to be in the
range { 3

4�+0.5−p, . . . , 3
4�+0.5+p}, where p is a parameter. The algorithm now

picks the layer Lk with the minimum number of vertices among all layers Li,
i ∈ { 3

4� + 0.5 − p, . . . , 3
4� + 0.5 + p}. Thus, the size of Lk is at most n/2p, which

is also the upper bound on the competitive ratio of the algorithm. Relaxing p
allows to keep the number of queries small, but can harm the approximation
quality, while setting p very small improves the approximation but leaves no
control over the number of queries. Clearly, a meaningful choice of p is in the
range {0, 1, 2, . . . , 1

4� − 0.5}.
Repeating the previous case analysis, the upper bounds on the approximation

ratio for the different cases are 1, 2(k−1)/�, and 3�−2k
� . As 3�−2k ≤ 3�−2(3

4�+
0.5− p) = 3

2�− 1+2p and 2(k − 1) ≤ 2(3
4 �+0.5+ p− 1) = 3

2 �+2p− 1 we obtain
that the approximation ratio is max{1, 3/2+ 2p−1

� , 3/2+ 2p−1
� } = 3/2+ 2p−1

� . The
parameter p can be used to tweak the approximation ratio and the competitive
ratio of the algorithm, which are 3/2 + 2p−1

� and n/2p, respectively.

Theorem 2. Let G be any graph and q a query which results in � layers. Then
there is an algorithm, parametrized by p ∈ {0, 1, 2, . . . , � 1

4�−0.5�}, which delivers
a (3/2+ 2p−1

�) approximation of the diameter of an unknown graph, and is n/2p
competitive.

2.2 Discovering a Minimal Dominating Set

In this section we consider the problem of discovering a minimal dominating
set in G. We provide an algorithm that discovers a minimal dominating set of
G with O(

√
d · n) queries, where d is the size of a minimum dominating set of

G. The algorithm, which we simply call Alg, works as follows. It starts from
an empty set D and grows it by adding vertices step by step so that D will

96 D. Bilò et al.

eventually be a minimal dominating set. At each step, Alg queries two vertices
x and y (an x-vertex and a y-vertex, respectively). The first vertex x is chosen
arbitrarily among the vertices that are not yet dominated by D. The algorithm
queries x and the information of the query decides the next choice of vertex y;
y is chosen among the set of neighbors of x in such a way that it maximizes the
set of newly dominated nodes by y (i.e., the subset of neighbors N(y) of y which
are at distance 2 from x and which are not neighbors of any vertex belonging to
our partial solution D). Both x and y are put into D. It can happen that the
query x has only one layer, and hence y does not dominate any new vertex, and
thus D is not minimal (y can be removed from D). Similarly, if y dominates all
neighbors of x and some vertices from L2(x), x is obsolete, and D is not minimal.
Thus, at the end, we modify D to make it minimal.

Theorem 3. The set D returned by Alg is a minimal dominating set in G.
Moreover, in order to discover D, the algorithm makes O(

√
d · n) queries, where

d denotes the size of a minimum dominating set in G.

Proof. It is clear that the returned set D is a minimal dominating set. It remains
to show the bound on the number of queries. Let {z1, . . . , zd} ⊆ V be a minimum
dominating set in G. We partition the set V into subsets Ci, i = 1, . . . , d: The
set Ci ⊆ V contains zi and all the neighbors of zi that are not in {z1, . . . , zd}
and that are not in any of the previous sets Cj , j < i.

Let X and Y denote the x-vertices and y-vertices, respectively, produced by
the algorithm. Every x-vertex belongs to a single set Ci. Let Xi, i = 1, . . . , d,
denote the vertices of X that belong to Ci. We consider the vertices of Xi in the
reverse order in which they have been queried by the algorithm. Let ki denote
the size of Xi and let xi

1, . . . , x
i
ki

denote the reverse order. For each vertex xi
j

we denote by yi
j the corresponding y-vertex (which was chosen in the same step

as xi
j). Now observe that (i) there are at least � uncovered vertices in Xi (and

thus in Ci, too) before querying xi
�, (i.e., at least the vertices xi

1, . . . , x
i
�); and (ii)

at least � uncovered vertices are covered during the while loop in which xi
� and

yi
� are queried (as zi, a neighbor of xi

�, has at least � undominated neighbors in
Ci at that time, and yi

� is chosen to maximize the number of newly dominated
vertices).

Consequently, we have that all vertices are covered when
∑d

i=1
∑ki

�=1 � = n,
i.e., when

∑d
i=1 ki(ki + 1) = 2n. The algorithm queries at most |X | + |Y | =

2|X | = 2
∑d

i=1 ki vertices. We are thus interested in how big the sum
∑d

i=1 ki

can be. We consider a maximization linear program (LP) max
∑d

i=1 ki with the
constraints ki ≥ 0, ∀i = 1, . . . , d, and

∑d
i=1 ki(ki + 1) = 2n.

By the Cauchy-Schwartz inequality we have that an optimal solution of the

above LP is k1, . . . , kd =
√

8n
d +1−1

2 which is at most
√

2n
d . This implies that

|X | =
∑d

i=1 ki ≤ d
√

2n
d =

√
2dn. ��

Now we construct an example in which it is possible to compute a minimal
dominating set of size d ≥

√
n − 1/2 after querying one specific vertex, but

Discovery of Network Properties with All-Shortest-Paths Queries 97

....

x1 x2 xd−1v1 v2 vd−1 q∗

q

Y1 Y2 Yd−1

Fig. 3. The lower bound construction for a minimal dominating set

any algorithm needs at least d queries before being able to compute a minimal
dominating set.

The graph G has the following structure (see Fig. 3 for an illustration). The
vertices in V are partitioned into three sets L0 = {q}, L1 = {q∗, x1, . . . , xd−1} ∪
{v1, . . . , vd−1} and L2 = Y1 ∪ · · · ∪ Yd−1, where all the sets Y1, . . . , Yd−1 have
cardinality d. All vertices but those in L2 are connected to q. Moreover, for all
i = 1, . . . , d−1, vertex xi is also connected to the vertex vi and all vertices in Yi.
It is easy to see that both {q, x1, . . . , xd−1} and {q∗, x1, . . . , xd−1} are minimum
dominating sets of G.

First we prove it is enough to query q∗ to find a minimal dominating set of G.
Indeed, after querying q∗, we discover all edges of G except the ones linking xi

with the vertex vi. The layers of q∗ are {q∗}, {q}, L1 \ {q∗}, L2 (ordered accord-
ing to the distance from q∗). The query q∗ also discovers that q∗ is connected
to q only, and that, considering only the edges between the layers, vertices of
Yi are adjacent with xi only. It is now an easy observation that from the in-
formation of query q∗ the algorithm can infer that both {q, x1 . . . , xd−1} and
{q∗, x1, . . . , xd−1} are minimal dominating sets in G.

Now let Alg be any deterministic algorithm and let us assume that it has
queried any set Q ⊆ V \ {q∗} with |Q| < d and such that Q contains q (notice
that we can always ensure that q is the first vertex queried by the algorithm). One
can show that the algorithm cannot guarantee the minimality of any dominating
set of GQ; moreover, it can be proved that the set of vertices that are indistin-
guishable to the algorithm and that contains q∗ has size at least d − |Q| + 1.
Finally, one can prove that there are at least d−|Q|+1 indistinguishable vertices
in every Yi. As a consequence, we can claim that Alg needs at least d queries
for discovering a minimal dominating set of G, as we can force the algorithm to
make the next query not equal to q∗. Expressing d in terms of n, we obtain a

lower bound of d =
√

n + 1
4 − 1

2 ≥
√

n − 1/2. The missing details of the proof
can be found in [12].

Theorem 4. There is a graph for which any algorithm needs to query at least
√

n−
1/2 vertices before it discovers a minimal dominating set, while an optimum offline
algorithm needs only one query. Thus no algorithm can achieve a better competitive
ratio than

√
n for the problem of discovering a minimal dominating set.

98 D. Bilò et al.

2.3 Discovering a Maximal Independent Set

In this section we consider the problem of discovering a maximal independent set
in G. We construct an example where Opt needs one query, and any algorithm
can be forced to make at least

√
n queries before it discovers any maximal

independent set.
Let Alg be any deterministic algorithm. Let us assume that its first query is at

node q1 (out of n nodes v1, . . . , vn). The graph G has the following structure (see
Fig. 4 for an illustration). There exists a central node c which is connected to

L2

L1c

q1

L2

L1c

q1

L1,1L1,2

q2

Fig. 4. Construction of a graph G for which any algorithm needs
√

n queries to discover
a maximal independent set

every node in V , and forms a maximal independent set on its own. Thus, Opt can
make a query at this node and discover that c is a maximal independent set. We
add other edges to G to make it impossible for any algorithm to find a maximal
independent set with less than

√
n queries. First, we split the vertices of V into

three groups: L0 = {q1}, L1, and L2. Vertex q1 is in L0,
√

n vertices are in
L2, and the rest of the vertices is in L1. The central vertex c is in L1. Vertex
q1 is connected to every vertex in L1, and all vertices in L1 are also connected
to L2, and c is connected to every vertex in L1 (hence, c is indeed connected
to every vertex). There is no edge within vertices in L2. The query at q1 splits
the vertices into two layers L1 and L2. Observe first that X1 := {q1} ∪ L2 is
a maximal independent set and there is no other one containing a vertex from
X1. Any algorithm discovering X1 as an independent set needs to query all but
one nodes in L2, which is

√
n − 1 (no query in L1 can discover any information

on non-edges within L2). Observe that any such query does not discover any
information about edges and non-edges within L1. If Alg does not query only in
L2 (and thus cannot discover X1 with less than

√
n queries), let q2 be the first

node that is queried in L1. Because all the nodes in this layer look the same to
the algorithm, the algorithm can be forced to query q2 at any node of L2. The
edge construction within L2 is a recursive construction: the query q2 splits L1
into two layers: L1,1 and L1,2, where, L1,2 has

√
n − 1 nodes, c is in L1,1, q2 is

connected to every node in L1,1, and L1,1 is connected to every node L1,2. There
is no edge in L1,2. Again, X2 := {q2}∪L1,2 is the only maximal independent set
containing a vertex from X2, and any algorithm needs |L1,2|−1 =

√
n−2 nodes to

discover X2. If Alg queries also in L1,1, the nodes within L1,1 are split recursively
into three parts {q3}, L1,1,1, and L1,1,2, with the obvious size and edge-set. This
recursive splitting can obviously run for at least

√
n times, which shows that no

deterministic algorithm can guarantee to find a maximal independent set of a
graph with less than

√
n queries.

Discovery of Network Properties with All-Shortest-Paths Queries 99

Theorem 5. There is a graph for which any algorithm needs to query at least√
n vertices before it discovers a maximal independent set, while an optimum

offline algorithm needs only one query. Thus there is no o(
√

n)-competitive al-
gorithm for the problem of discovering a maximal independent set.

2.4 Discovering a Bridge or an Articulation Node of G

In this section we discuss two related properties of G. We want to discover
whether the graph G has an articulation node or a bridge. An articulation node
of G is a vertex v such that the induced graph on V \ {v} is not connected.
A bridge is an edge e for which the graph G \ e is not connected. We show
that if the graph contains an articulation node, no algorithm is better than
n/2-competitive, and if the graph contains a bridge, similarly, no algorithm can
achieve a competitive ratio better than n/2. We also present an n/2-competitive
algorithm for the bridge discovery problem.

We begin with the bridge discovery problem. Consider the graph G from
Fig. 5. G has an even number of vertices, and consists of one node q0 connected
to all remaining n − 1 vertices v1, . . . , vn−1. The vertices v2i−1 and v2i, i =
1, . . . , (n−2)/2, form an edge. The graph contains exactly one bridge – the edge
{q0, vn−1}. Any algorithm can be forced to make the first query at q0. Thus, all
the remaining vertices lie within the same layer L1, and look indistinguishable
to the algorithm. We can force the next query to be at v1. This query keeps
the vertices v3, v4, . . . , vn−1 indistinguishable to the algorithm, and does not
give any information on the bridge {q0, vn−1}. Hence, next time the algorithm
queries a vertex in this group of vertices, we can force it to query v3. Thus, using
the recursive approach, any algorithm can be forced to query at least vertices
v1, v3, v5, . . . , vn−3, which then together discover the bridge {q0, vn−1}. Observe
that an optimum algorithm can query vn−1 to discover the bridge. This shows
the lower bound n/2.

For the problem of discovering an articulation node we prove a lower bound
of n/2 by modifying the input graph G according to the vertices queried by
the algorithm (i.e., we assume that the adversary is adaptive to the algorithm).
The graph G will be a super-graph of a star centered at q such that a node
q∗
= q is incident with q only. In this case, by querying q∗ we can claim that
q is an articulation node as we discover that q∗ has degree 1. Before explaining

q0

v1 v2 vn−1

Fig. 5. Bridge discovery

q0

qi

w w′
w′′
qk

ec

Fig. 6. Assigning vertex w′

to the query qi

v1

v2

v3 v4

v5

v6

v7v8

v9

Fig. 7. A clique minus some
edges (dotted lines)

100 D. Bilò et al.

how the idea behind the proof of the lower bound works, we provide some new
definitions. First, given a set of queries Q, we define a Q-block as a maximal
set of vertices in V \ {q} that are connected in the graph GQ \ {q}. Clearly, if
Q = V , we discover the whole graph, and thus G has an articulation node iff
there are at least two Q-blocks in the original graph G. The idea of the lower
bound is to prevent any algorithm to learn this information soon. In every Q-
block B of GQ we consider a special vertex – an anchor. An anchor is a vertex
for which the query set Q does not reveal whether the anchor is connected to
another anchor in the original graph, i.e., Q is not enough to distinguish G from
another G′ ∈ comp(G, Q) (recall that comp(G, Q) is the set of all graphs G′ which
give the same query results for queries in Q), i.e., we do not know whether all
Q-blocks are connected to one another after querying Q, hence we cannot claim
that G is (is not) 2-vertex connected. Clearly, in order to claim that G is 2-
vertex connected, the algorithm has to prove that V \ {q} is a Q-block, i.e., all
the graphs in comp(G, Q) are 2-vertex connected. Conversely, in order to claim
that G is not 2-vertex connected, then the algorithm has to prove that all the
graphs in comp(G, Q) are not 2-vertex connected.

Now, let us consider any deterministic algorithm. As all vertices are indistin-
guishable, we may assume that the algorithm starts by querying Q = {q0 = q}.
Clearly, for each vertex x in V \{q}, we have that {x} is a Q-block whose anchor
vertex is x. As all vertices V \ {q} are indistinguishable, we can assume that
the algorithm queries q1
= q∗, q. In this case we grow the Q-block B = {q1} by
merging it with two other Q-blocks B′ = {x′} and B′′ = {x′′}, with x′, x′′
= q∗.
Basically, we add the edges {q1, x

′} and {x′, x′′} to G. Notice that there are
2-vertex connected graphs in comp(G, {q0, q1}) as we do not know whether there
are edges connecting two anchor vertices to each other. Finally we let x′′ be
the new anchor vertex of the Q′-block B, where Q′ = Q ∪ {q1}. At a generic
step, let us assume that the algorithm queried all the vertices in Q, and let us
assume that comp(G, Q) contains a 2-vertex connected graph and a graph with
an articulation node. The algorithm can either choose to query a vertex q′ in the
Q-block B we grew so far or not. In the first case, notice that the new informa-
tion discovered is maximized when q′ is exactly the anchor vertex of the Q-block
B. In the case where q′ is from B and q is the anchor vertex a of B, we merge B
with two other blocks B′ = {x′} and B′′ = {x′′}, where x′, x′′
= q∗ (it is worth
noticing that all vertices but q and those in B are indistinguishable in GQ) by
simply adding edges {a, x′}, and {x′, x′′} to G. Let Q′ = Q ∪ {q′}. In the new
graph, x′′ is the new anchor of the enlarged Q′-block B′ containing the old block
B. In the case where query q′ is outside B, we merge two singleton Q-blocks
{q′} and {x′} to B by adding edges {q′, x′}, and {x′, a} to G, where a is the
anchor vertex of B, and x′ is any vertex outside B and not equal to q′. Notice
that in this new construction, a remains the anchor of the new Q′-block B′ that
contains the original Q-block B (where Q′ = Q ∪ {q′}). The lower bound of n/2
follows from the fact that the algorithm queries at least (|B|−1)/2 vertices of B.

Theorem 6. For the problem of discovering a bridge or an articulation node
there is no better deterministic algorithm than n/2-competitive.

Discovery of Network Properties with All-Shortest-Paths Queries 101

We now present a simple algorithm for determining whether a graph G is 2-
edge connected. The algorithm needs at most �n

2 � queries. The algorithm makes
an arbitrary initial query q0. The resulting layered graph G{q0} is used by the
algorithm to choose the next queries. We denote by qi the query that is made by
the algorithm in the i-th step, and by Qi all the queries (including qi) made so
far. Observe that if there is i such that there is only one edge e between Li and
Li+1, the edge e is a bridge of G. Observe also that if G has a bridge e ∈ E, it has
to appear as an edge in the result of the query q0. Thus, choosing query qi+1, we
can concentrate on those edges of Gq0 , which are not part of any cycle of GQi .
While there are such edges (and thus candidates for a bridge), the algorithm
picks among all such edges the farthest endpoint from q0, and queries it. We
claim that this algorithm terminates, and that the algorithm knows at the end
whether the graph has a bridge or not, and that it makes at most �(n − 1)/2�
queries on top of q0 (and is thus �n/2�-competitive).

Let qi be the query of the algorithm in step i, and let ei = {ui, qi} be the bridge
of GQi−1 with qi the farthest endpoint from q0 among all bridges of GQi−1 . Let �i

denote the distance of qi from q0. Let R(qi) be the set of vertices from layers Lj ,
j ≥ �i, which can be reached from qi by a path which uses at most one vertex
from each Lj , j ≥ �i. (i.e., if we orient the edges according to the increasing
distance from q0, the set R(qi) is the set of all vertices for which there exists a
directed path from qi). Thus, R(qi) forms a component of GQi−1 \ {ei}, as there
cannot be any edge with endpoints in the same layer leaving R(qi) (otherwise ei

would no longer be a bridge in GQi−1). Let us assume that ei is not a bridge in
G. Then there exists a cycle C in G which contains the edge ei. The cycle C has
to contain a not yet discovered edge ec = {w, w′} which is adjacent to a vertex
w in R(qi), and to a vertex w′ /∈ R(qi). The vertices w and w′ have to be from
the same layer Lj , j ≥ �i (as it was not discovered by q0). Clearly, qi discovers
this edge {w, w′}, as the distance from qi to w is j − �i (as w ∈ R(qi)), and the
distance from qi to w′ is bigger than j − �i (as w /∈ R(qi)). As {w, w′} is a newly
discovered edge, it follows that w′ was not queried before. To show that at most
�(n − 1)/2� queries are made by the algorithm after the query q0, we want to
assign one unqueried vertex to one queried vertex. In our case we assign w′ to
qi (notice that w could possibly be equal to qi, and thus cannot be assigned to
qi). We now show that w′ is not already assigned to a previously queried vertex
qk, k < i, with �k ≥ �i. Figure 6 depicts the situation. If this is the case, w′ is
assigned to query qk because w′ is an endpoint of an edge {w′, w′′} which was
discovered by query qk, and which is a part of a cycle that shows that qk is not
an endpoint of a bridge in G. Thus, w′′ ∈ R(qk) and w′ /∈ R(qk). Clearly, the
distance between qk and w′ is j − �k + 1. The distance between qk and w has to
be j − �k + 1 as well, as the edge {w, w′} is not discovered by qk. But this is not
possible. The shortest path from qk to w cannot go via a vertex from layer Ls,
s < �k (the distance would be bigger than j − �k + 1). Thus, the shortest path
between qk and w goes only via vertices of layers Ls, s ≥ �k. But then ei cannot
be a bridge in GQi−1 : The shortest path from qk to w, the shortest path from
w to qi, and the path from qi to qk via q0 induce a cycle with ei, using edges

102 D. Bilò et al.

known after query qk. This is a contradiction, and thus w′ is not assigned to qk

and can be assigned to qi.
Thus, if ei is not a bridge, we will discover at least one new edge ec that

includes ei into a cycle of G, and one of the endpoints of ec can be assigned
to qi. If we do not discover any such edge, the edge ei is a bridge of G. The
assignment argument shows that after q0 we query at most �(n − 1)/2� vertices.
The termination of the algorithm follows from the fact that we can query at most
n vertices, and from the fact that if GQi contains a bridge, then its endpoint
further from q0 was not queried yet, and we still have a vertex to query in step
i + 1.

Theorem 7. There is an �n/2�-competitive algorithm for the problem of dis-
covering a bridge of a graph.

2.5 Discovering the Min/Max Degree of G

We investigate how many queries are needed in order to discover the minimum
degree of G, and the maximum degree of G. The lower bound construction for the
problem of finding an articulation node (Section 2.4) shows an example where
any deterministic algorithm needs at least n/2 queries to discover the minimum
degree of G, whereas an optimum algorithm needs only one query, yielding a
lower bound n/2 on the competitive ratio of deterministic algorithms. For the
problem of discovering the maximum degree we similarly present a lower bound
n/2 on the competitive ratio of deterministic algorithms. Consider a graph G
with n = 2k+1 vertices, which is constructed from a complete graph Kn by delet-
ing the “even” edges {v2i, v2i+1}, i = 1, . . . , k from the cycle v1, v2, v3, . . . , vn.
An example of such a graph for n = 9 is in Fig. 7. Observe that v1 is the only
vertex of the graph which has degree n − 1, and thus the maximum degree of G
can be discovered by one query at v1. On the other hand, any other vertex vi

has exactly n − 2 neighbors, which are indistinguishable with the query. Thus,
every deterministic algorithm can be forced to query k vertices before it can
distinguish v1 from other vertices, and therefore the algorithm makes at least
k + 1 queries before it reveals the maximum degree of G.

3 Conclusions

We have introduced the online problem of discovering graph properties with
all-shortest-paths queries, and considered in more detail the discovery of the
diameter, a minimal dominating set, a maximal independent set, the 2-edge
connectivity, the 2-vertex connectivity, the maximum degree, and the minimum
degree of an unknown graph. We have presented lower bounds for the prob-
lems, and also an O(

√
d · n)-competitive algorithm for the minimal dominating

set discovery, and an optimal n
2 -competitive algorithm for the bridge discovery

problem. We have also introduced a technique of querying an interface of a graph
GQ, which may prove to be helpful in other discovery settings. Furthermore we

Discovery of Network Properties with All-Shortest-Paths Queries 103

have shown an adaptive-adversary lower bound construction, which is the first
adaptive construction in the discovery setting as introduced in [5].

Our work was motivated by the current intensive activities in the area of
mapping the Internet. The all-shortest-path queries model the information that
is obtained from routing tables of BGP routers. Of course, our assumption of
getting all shortest paths is not reflected fully in reality – it certainly is a sim-
plification which helps to analyze the problem. In reality, we would assume to
get much less information. The lower bounds presented in this paper suggest,
however, that in any realistic situation we cannot hope for better results.

References

1. Cheswick, B.: Internet mapping project, http://www.cheswick.com/ches/map/
2. Govindan, R., Tangmunarunkit, H.: Heuristics for Internet map discovery. In: Pro-

ceedings of the 19th Conference on Computer Communications (IEEE INFOCOM),
Tel Aviv, Israel, March 2000, pp. 1371–1380 (2000)

3. DIMES: Mapping the internet, http://www.netdimes.org/
4. Route Views Project: University of Oregon, http://www.routeviews.org
5. Beerliová, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffmann, M., Mihalák, M.:

Network discovery and verification. IEEE Journal on Selected Areas in Communi-
cations (JSAC) 24(12), 2168–2181 (2006)

6. Diestel, R.: Graph Theory, 3rd edn. Graduate Texts in Mathematics, vol. 173.
Springer, Heidelberg (2005)

7. Rivest, R.L., Vuillemin, J.: On recognizing graph properties from adjacency met-
rices. Theoretical Computer Science 3, 371–384 (1976)

8. Ron, D.: Property testing. In: Handbook of Randomized Computing, vol. II, pp.
597–649. Kluwer Academic Publishers, Dordrecht (2001)

9. Chartrand, G., Zhang, P.: The theory and applications of resolvability in graphs:
A survey. Congressus Numerantium 160, 47–68 (2003)

10. Barrat, A., Erlebach, T., Mihalák, M., Vespignani, A.: A (short) survey on network
discovery. Technical report, DELIS – Dynamically Evolving, Large-Scale Informa-
tion Systems (2008)

11. Ram, L.S.: Tree-based graph reconstruction. Research Report of the European
Graduate Program Combinatorics-Computation-Geometry (CGC) (March 2003)

12. Bilò, D., Erlebach, T., Mihalák, M., Widmayer, P.: Discovery of network properties
with all-shortest-paths queries. Technical Report 591, Department of Computer
Science, ETH Zurich (April 2008)

http://www.cheswick.com/ches/map/
http://www.netdimes.org/
http://www.routeviews.org

Recovering the Long-Range Links

in Augmented Graphs

Pierre Fraigniaud1,�, Emmanuelle Lebhar1,��, and Zvi Lotker2

1 CNRS and University Paris Diderot
Pierre.Fraigniaud@liafa.jussieu.fr

2 Ben Gurion University
Emmanuelle.Lebhar@liafa.jussieu.fr

Abstract. The augmented graph model, as introduced by Kleinberg
(STOC 2000), is an appealing model for analyzing navigability in so-
cial networks. Informally, this model is defined by a pair (H,ϕ), where
H is a graph in which inter-node distances are supposed to be easy to
compute or at least easy to estimate. This graph is ”augmented” by
links, called long-range links, which are selected according to the prob-
ability distribution ϕ. The augmented graph model enables the analysis
of greedy routing in augmented graphs G ∈ (H,ϕ). In greedy routing,
each intermediate node handling a message for a target t selects among
all its neighbors in G the one that is the closest to t in H and forwards
the message to it.

This paper addresses the problem of checking whether a given graph
G is an augmented graph. It answers part of the questions raised by
Kleinberg in his Problem 9 (Int. Congress of Math. 2006). More pre-
cisely, given G ∈ (H,ϕ), we aim at extracting the base graph H and
the long-range links R out of G. We prove that if H has high clustering
coefficient and H has bounded doubling dimension, then a simple local
maximum likelihood algorithm enables to partition the edges of G into
two sets H ′ and R′ such that E(H) ⊆ H ′ and the edges in H ′ \ E(H)
are of small stretch, i.e., the map H is not perturbed too greatly by un-
detected long-range links remaining in H ′. The perturbation is actually
so small that we can prove that the expected performances of greedy
routing in G using the distances in H ′ are close to the expected perfor-
mances of greedy routing using the distances in H . Although this latter
result may appear intuitively straightforward, since H ′ ⊇ E(H), it is
not, as we also show that routing with a map more precise than H may
actually damage greedy routing significantly. Finally, we show that in
absence of a hypothesis regarding the high clustering coefficient, any lo-
cal maximum likelihood algorithm extracting the long-range links can
miss the detection of at least Ω(n5ε/ log n) long-range links of stretch at
least Ω(n1/5−ε) for any 0 < ε < 1/5, and thus the map H cannot be
recovered with good accuracy.

� Additional supports from the ANR projects ALADDIN and ALPAGE, and from the
COST Action 295 DYNAMO.

�� Additional supports from the ANR project ALADDIN, and from the COST Action
295 DYNAMO.

A. Shvartsman and P. Felber (Eds.): SIROCCO 2008, LNCS 5058, pp. 104–118, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Recovering the Long-Range Links in Augmented Graphs 105

1 Introduction

Numerous papers that appeared during the last decade tend to demonstrate
that several types of interaction networks share common statistical properties,
encompassed under the broad terminology of small worlds [35,36,37]. These net-
works include the Internet (at the router level as well as at the AS level) and
the World Wide Web. Actually, networks defined in frameworks as various as
biology (metabolic and protein networks), sociology (movies actors collaboration
network), and linguistic (pairs of words in english texts that appear at most one
word apart) also share these statistical properties [20]. Specifically, a network is
said small world [39] if it has low density (i.e., the total number of edges is small,
typically linear in the number of nodes), the average distance between nodes is
small (typically polylogarithmic as a function of the number of nodes), and the
so-called clustering coefficient, measuring the local edge density, is high (i.e., sig-
nificantly higher than the clustering coefficient of Erdös-Rényi random graphs
Gn,p). Other properties often shared by the aforementioned networks include
scale free properties [6] (i.e., fat tailed shapes in the distributions of parameters
such as node degree), limited growth of the ball sizes [2,21], or low doubling
dimension [38].

A lot remains to be done to understand why the properties listed above ap-
pear so frequently, and to design and analyze models capturing these properties.
Nevertheless, there is now a common agreement on their presence in interaction
networks. The reason for this agreement is that, although the statistical validity
of some measurements is still under discussion [4], many tools (including the con-
troversial Internet Traceroute) have been designed to check whether a network
satisfies the aforementioned properties.

This paper addresses the problem of checking another important property
shared by social networks: the navigability property.

It was indeed empirically observed that social networks not only possess small
average inter-node distance, but also that short routes between any pair of nodes
can be found by simple decentralized processes [9,34]. One of the first papers
aiming at designing a model capturing this property is due to Kleinberg [23],
where the notion of augmented graphs is introduced. Informally, an augmented
graph is aiming at modeling two kinds of knowledge of distances available to
the nodes: a global knowledge given by a base graph, and a local knowledge
given by one extra random link added to each node. The idea is to mimic the
available knowledge in social networks, where individuals share some global
distance comparison tool (e.g., geographical or professional), but have also
private connections (e.g., friendship) that are unknown to the other individuals.
We define an augmented graph model as a pair (H, ϕ) where H is a graph, called
base graph, and ϕ is a probability distribution, referred to as an augmenting
distribution for H . This augmenting distribution is defined as a collection of
probability distributions {ϕu, u ∈ V (H)}. Every node u ∈ V (H) is given one

106 P. Fraigniaud, E. Lebhar, and Z. Lotker

extra link1, called long-range link, pointing to some node, called the long-range
contact of u. The destination v of such a link is chosen at random with probability
Pr{u → v} = ϕu(v). (If v = u or v is a neighbor of u, then no link is added).
In this paper, a graph G ∈ (H, ϕ) will often be denoted by H + R where H is
the base graph and R is the set of long-range links resulting from the trial of ϕ
yielding G.

An important feature of this model is that it enables to define simple but effi-
cient decentralized routing protocols modeling the search procedure applied by
social entities in Milgram’s [34] and Dodd’s et al [9] experiments. In particular,
greedy routing in (H, ϕ) is the oblivious routing process in which every interme-
diate node along a route from a source s ∈ V (H) to a target t ∈ V (H) chooses
among all its neighbors (including its long-range contact) the one that is the
closest to t according to the distance measured in H , and forwards to it. For this
process to apply, the only ”knowledge” that is supposed to be available at every
node is its distances to the other nodes in the base graph H . This assumption
is motivated by the fact that, if the base graph offers some nice properties (e.g.,
embeddable in a low dimensional metric with small distorsion) then the distance
function distH is expected to be easy to compute, or at least to approximate,
locally.

Lots of efforts have been done to better understand the augmented graph
model (see, e.g., [1,5,7,11,12,13,14,15,29,30,31,32], and the survey [25]). Most
of these works tackle the following problem: given a family of graph H, find a
family of augmenting distributions {ϕH , H ∈ H} such that, for any H ∈ H,
greedy routing in (H, ϕH) performs efficiently, typically in polylog(n) expected
number of steps, where n = |V (H)|. Kleinberg first showed that greedy routing
performs in O(log2 n) expected number of steps on any square mesh augmented
with an appropriate harmonic distribution [23]. Among the works that followed
Kleinberg’s seminal results, an informative result due to Duchon et al [10] states
that any graph of bounded growth can be augmented so that greedy routing
performs in polylog(n) expected number of steps. Slivkins [38] extended this
result to graphs of bounded doubling dimension, and even doubling dimension
at most O(log log n). This bound on the doubling dimension is tight since [16]
proved that, for any function d(n) ∈ ω(polylog(n)), there is a family of graphs
of doubling dimension d(n) for which any augmentation yields greedy routing
performing in ω(polylog(n)) expected number of steps2.

Despite these progresses in analyzing the augmented graph model for small
worlds, the key question of its validity is still under discussion. In [25], Kleinberg
raised the question of how to check that a given network is an augmented graph
(Problem 9). This is a critical issue since, if long-range links are the keystone

1 By adding ku ≥ 1 long-range links to node u, for every u ∈ V (H), instead of just one,
with Pr(ku = k) ∼ 1/kα for some α > 1, the model can also capture the scale-free
property. For the sake of simplicity however, we will just assume ku = 1 for every
u ∈ V (H).

2 The notation d(n) ∈ ω(f(n)) for some functions f and d means that d(n)/f(n) tends
to infinity when n goes to the infinity.

Recovering the Long-Range Links in Augmented Graphs 107

of the small world phenomenon, they should be present in social networks, and
their detection should be greatly informative. This paper aims at answering part
of this detection problem.

1.1 The Reconstruction Problem

This paper addresses the following reconstruction problem: given an n-node
graph G = H + R ∈ (H, ϕ), for some unknown graph H and unknown dis-
tribution ϕ, extract a good approximation H ′ of H such that greedy routing
in G using distances in H ′ performs approximately as well as when using the
distances in the ”true” base graph H . More precisely, the expected number of
steps of greedy routing in H ′ has to be the one in H up to a polylogarithmic
factor. Note that, for every edge in R one extremity is the long-range contact of
the other. Nevertheless, there is no a priori orientation of these edges when G is
given.

To measure the quality of the approximation H ′ of H , we define the stretch of
a long-range link between u and v as distH(u, v). Then, the extracted base graph
H ′ is considered to be of good quality if it contains H and does not contain too
many long-range links of large stretch. Indeed, we want to approximate H by H ′

as close as possible not only for the purpose of efficient routing using the metric
of H ′, but also because the augmented graph model assumes that distances in
H are easy to compute or approximate. Therefore, the map of distances of H ′

is wished to be close to the one of H .
In addition to its fundamental interest, the reconstruction problem may find

important applications in network routing. In particular, if the base graph H
offers enough regularity to enable distance computation using node names (or
labels) of small size, then critical issues of storage and quick access to rout-
ing information (such as the ones currently faced for Internet [26,33]) can be
addressed. Indeed, applying greedy routing in the network using solely the dis-
tances in H may be sufficient to achieve fast routing (i.e., performing in expected
polylogarithmic number of steps).

1.2 Methodology

In statistics, one of the most used techniques is the maximum likelihood
method [22]. Applied to our problem, this would lead to extract the long-range
links based on their probability of existence. Precisely, the method would select
S as the set of the n long-range links such that

Pr(G | S is the set of long-range links)

is maximum. This brute force approach however requires testing an exponential
number of sets, and it requires some knowledge about the distribution ϕ. For
instance, in [3,8], the authors assume that R is a random power law graph added
on top of the base graph H . Motivated by the experimental results in [28], and the
analytical results in [10,23,27,38], we consider augmenting distributions where
ϕu(v) is inversely proportional to the size of the ball of radius distH(u, v) centered

108 P. Fraigniaud, E. Lebhar, and Z. Lotker

at u. We call such kind of augmenting distributions density based distributions.
They are the ones enabling an efficient augmentation of graphs with bounded
ball growth, and, up to modifying the underlying metric by weighting nodes, of
graphs with bounded doubling dimension.

Fixing a class of augmenting distributions still does not suffice for applying
the maximum likelihood method because of the large number of sets. One way
to overcome this difficulty it to consider every edge separately. More precisely,
we consider local maximum likelihood methods defined as follows.

Definition 1. An algorithm A for recovering the base graph H from G ∈ (H, ϕ)
is a local maximum likelihood algorithm if and only if A decides whether or not
an edge e ∈ E(G) is a long-range link solely based on the value of

Pr(G | e ∈ E(H)).

Applying a local maximum likelihood algorithm however requires some informa-
tion about the local structure of the base graph H . For instance, in [8], the base
graph H is assumed to possess a clustering property characterized by a large
number of edge-disjoint paths of bounded length connecting the two extremities
of any edge. In [3], the clustering property is characterized by a large amount of
flow that can be pushed from one extremity of an edge to the other extremity,
along routes of bounded length. Motivated by the statistical evidences demon-
strating that social networks are locally dense, we consider a clustering property
stating that every edge participates in at least c · log n/ log log n triangles for
some positive constant c. Note that this function grows very slowly, and that
its output for practical values of n is essentially constant: for a network with
one billion nodes, our assumption states that every edge participates to at least
6c triangles. (For a network with one billion billions nodes, this bound becomes
10c). Note also that even though we focus on the number of triangles, our ap-
proach could easily be adapted to apply on many other types of local structures
whose characteristics would enable distinguishing local connections from remote
connections.

1.3 Our Results

First, we present a simple local maximum likelihood algorithm, called extract,
that, given an n-node graph G = H + R ∈ (H, ϕ), where H has a clustering
coefficient such that every edge participates in Ω(log n/ log log n) triangles, and
ϕ is a density-based augmenting distribution, computes a partition (H ′, R′) of
E(G). This partition satisfies E(H) ⊆ H ′ and, for any β ≥ 1, if X is the random
variable counting the number of links in R \ R′ of stretch at least logβ+1 n, then
Pr{X > log2β+1(n)} ≤ 1/n whenever the maximum degree Δ of H satisfies Δ ≤
O(logβ n). That is, Algorithm extract is able to almost perfectly reconstruct
the map H of G, up to long-range links of polylogarithmic stretch. It is worth
mentioning that Algorithm extract runs in time close to linear in |E(G)|, and
thus is applicable to large graphs with few edges, which is typically the case of
small world networks.

Recovering the Long-Range Links in Augmented Graphs 109

Our main positive result (Theorem 1) is that if in addition H has bounded
growth, then greedy routing in G using the distances in H ′ performs in polylog(n)
expected number of steps between any pair. This result is crucial in the sense
that Algorithm extract is able to approximate the base graph H and the
set R of long-range links accurately enough so that greedy routing performs
efficiently. In fact, we prove that the expected slow down of greedy routing
in G using the distances in H ′ compared to greedy routing in (H, ϕ) is only
polylog(n). Although this latter result may appear intuitively straightforward
since H ′ ⊇ E(H), we prove that routing with a map more precise than H may
actually damage greedy routing performances significantly.

We also show how these results can be generalized to the case of graphs with
bounded doubling dimension.

Finally, Theorem 2 proves that the clustering coefficient plays a crucial role
for extracting the long-range links of an augmented graph using local maximum
likelihood algorithms. We prove that any local maximum likelihood algorithm
extracting the long-range links in some augmented graph with low clustering
coefficient fails. In fact, this is true even in the case of cycles augmented using the
harmonic distribution, that is even in the case of basic graphs at the kernel of the
theory of augmented graphs [23]. We prove that any local maximum likelihood
algorithm applied to the harmonically augmented cycle fails to detect at least
Ω(n5ε/ logn) of the long-range links of length Ω(n1/5−ε) for any 0 < ε < 1/5.

2 Extracting the Long-Range Links

In this section, we first focus on the task of extracting the long-range links from
an augmented graph G = H + R ∈ (H, ϕ) without knowing H . The efficiency
of our extraction algorithm in terms of greedy routing performances will be
analyzed in the next section. As will be shown in Section 4, extracting the long-
range links from an augmented graph is difficult to achieve in absence of a priori
assumptions on the base graph H and on the augmenting distribution ϕ. Before
presenting the main result of the section we thus present the assumptions made
on H and ϕ.

The clustering coefficient of a graph H is aiming at measuring the probability
that two distinct neighboring nodes u, v of a node w are neighbors. Several
similar formal definitions of the clustering coefficient appear in the literature.
In this paper, we use the following definition. For any node u of a graph H , let
NH(u) denotes the neighborhood of u, i.e., the set of all neighbors of u in H .

Definition 2. An n-node graph H has clustering c ∈ [0, 1] if and only if c is the
smallest real such that, for any edge {u, v} ∈ E(H),

|NH(u) ∩ NH(v)|
n

≥ c.

For instance, according to Definition 2, each edge of a random graph G ∈ Gn,p

with p 	 log n
n has expected clustering 1/n2 up to polylogarithmic factors. In our

110 P. Fraigniaud, E. Lebhar, and Z. Lotker

results, motivated by the fact that interaction networks have a clustering coef-
ficient much larger than uniform random graphs, we consider graphs in (H, ϕ)
for which the clustering coefficient of H is slightly more that 1/n, that is every
edge participates in Ω(log n/ log log n) triangles.

We also focus on augmenting distributions that are known to be efficient ways to
augment graphs of bounded growth (or bounded doubling dimension) [10,23,38].
For any node u of a graph H , and any r > 0, let BH(u, r) denote the ball centered
at u of radius r in H , i.e., BH(u, r) = {v ∈ V (G) | distH(u, v) ≤ r}.

Definition 3. An augmenting distribution ϕ of a graph H is density-based if
and only if ϕu(u) = 0, and for every two distinct nodes u and v of H,

ϕu(v) =
1

Zu

1
|BH(u, distH(u, v))|

where Zu =
∑

w �=u 1/|BH(u, distH(u, w))| is the normalizing coefficient.

Density-based distributions are motivated by their kernel place in the theory of
augmented graphs, as well as by experimental studies in social networks. Indeed,
density-based distributions applied to graphs of bounded growth roughly give
a probability 1/k for a node u to have its long-range contact at distance k,
which distributes the long-range links equivalently over all scales of distances,
and thus yields efficient greedy routing. In addition, Liben-Nowell et al. [28]
showed that in some social networks, two-third of the friendships are actually
geographically distributed this way: the probability of befriending a particular
person is inversely proportional to the number of closer people.

Notation. According to the previous discussion, for any β ≥ 1, we consider the
family M(n, β) of n-node density-based augmented graph models (H, ϕ) where
H has clustering c ≥ Ω(log n

n log log n) and maximum degree Δ ≤ O(logβ n).
We describe below a simple algorithm, called extract, that, given an n-node

graph G and a real c ∈ [0, 1], computes a partition (H ′, R′) of the edges of G.
This simple algorithm will be proved quite efficient for reconstructing a good
approximation of the base graph H and a good approximation the long-range
links of a graph G ∈ (H, ϕ) when H has high clustering and ϕ is density-based.

Algorithm extract:
Input: a graph G, c ∈ [0, 1];

R′ ← ∅;
For every {u, v} ∈ E(G) do

If 1
n |NG(u) ∩ NG(v)| < c then R′ ← R′ ∪ {u, v};

H ′ ← E(G) \ R′;
Output: (H ′, R′).

Note that the time complexity of Algorithm extract is
O(

∑
u∈V (G)(degG(u))2), i.e., close to |E(G)| for graphs of constant aver-

age degree. More accurate outputs could be obtained by iterating the algorithm
using the test 1

n |NH′ (u) ∩ NH′(v)| < c until H ′ stabilizes. However, this would

Recovering the Long-Range Links in Augmented Graphs 111

significantly increase the time complexity of the algorithm without significantly
improving the quality of the computed decomposition (H ′, R′). The main
quantifiable gain of iterating Algorithm extract would only be that H ′ would
be of clustering c, and would be maximal for this property. Finally, note also
that Algorithm extract involves local computations, and therefore could be
implemented in a distributed manner.

The result hereafter summarizes the main features of Algorithm extract.

Lemma 1. Let (H, ϕ) ∈ M(n, β), and G ∈ (H, ϕ). Let c be the clustering
coefficient of H. Assume G = H + R. Then Algorithm extract with input
(G, c) returns a partition (H ′, R′) of E(G) such that E(H) ⊆ H ′, and:

Pr(X > log2β+1 n) ≤ O
(1

n

)
,

where X is the random variable counting the number of links in R\R′ of stretch
at least logβ+1 n.

Proof. Since H has clustering c, for any edge {u, v} in E(H), 1
n |NH(u) ∪

NH(v)| ≥ c, and therefore {u, v} is not included in R′ in Algorithm extract.
Hence, E(H) ⊆ H ′. For the purpose of upper bounding Pr(X > log2β+1 n),
we first lower bound Zu, for any u ∈ G. We have for any u ∈ G, Zu ≥
degH(u)/(degH(u) + 1) ≥ 1/2.

Let S ⊆ R be the set of long-range links that are of stretch at least logβ+1 n.
We say that an edge {u, v} ∈ R survives if and only if it belongs to H ′. For
each edge e ∈ S, let Xe be the random variable equal to one if e survives and 0
otherwise, when R is the set of random links chosen according to ϕ.

Let e = {u, v} ∈ S. For e to be surviving in H ′, it requires that u and v have
at least c · n neighbors in common in G. If w is a common neighbor of u and v
in G, then, since distH(u, v) ≥ log n > 2, at least one of the two edges {w, u}
or {w, v} has to belong to R. Note that u and v can only have one common
neighbor w such that both of these edges are in R because we add at most one
long-range link to every node, and u, v ∈ S. Thus, there must be at least c ·n−1
common neighbors w for which only one of the edges {w, u} or {w, v} is in R.
The following claim upper bound the probability of this event. (Due to lack of
space, the proofs of all claims are omitted).

Claim 1. Pr{Xe = 1} ≤ 1/n where e = {u, v} ∈ S.

To compute the probability that at most log2β+1 n edges of S survive in total, we
use virtual random variables that dominate the variables Xe, e ∈ R, in order to
bypass the dependencies between the Xe. Let us associate to each e ∈ S a random
variable Ye equals to 1 with probability 1/n and 0 otherwise. By definition, Ye

dominates Xe for each e ∈ S and the Ye are independently and identically
distributed. Note that, the fact that some long-range link e survives affects the
survival at most Δ2 other long-range links of R, namely, all the potential long-
range links between NH(u) and NH(v). Therefore the probability that k links
of S survive is at most the probability that k/Δ2 of the variables Ye are equal

112 P. Fraigniaud, E. Lebhar, and Z. Lotker

to one. In particular we have: Pr{
∑

e∈S Xe > log2β+1 n} ≤ Pr{
∑

e∈S Ye >

log2β+1 n/Δ2}. Using Chernoff’ inequality, we have the following claim.

Claim 2. Pr{
∑

e∈S Ye > log2β+1 n/Δ2} ≤ 1/n.

From Claim 2, we directly conclude that Pr{
∑

e∈S Xe > log2β+1 n} ≤ 1
n .
�

3 Navigability

In the previous section, we have shown that we can almost recover the base
graph H of an augmented graph G ∈ (H, ϕ): very few long-range links of large
stretch remain undetected with high probability. In this section, we prove that
our approximation H ′ of H is good enough to preserve the efficiency of greedy
routing. Indeed, although it may appear counterintuitive, being aware of more
links does not necessarily speed up greedy routing. In other words, using a map
H ′ ⊇ H may not yield better performances than using the map H , and actually
it may even significantly damage the performances. This phenomenon occurs
because the augmenting distribution ϕ is generally chosen to fit well with H ,
and this fit can be destroyed by the presence of a few more links in the map.
This is illustrated by the following property.

Property 1. There exists an n-node augmented graph model (H, ϕ) and a long-
range link e such that, for Ω(n) source-destination pairs, the expected number of
steps of greedy routing in (H, ϕ) is O(log2 n), while greedy routing using distances
in H ∪ {e} takes ω(polylog(n)) expected number of steps.

Proof. Let H be the 2n-node graph consisting in a path P of n nodes u1, . . . , un

connected to a d-dimensional �∞-mesh M of n nodes. Precisely, M is the n-node
graph consisting of kd nodes labeled (x1, . . . , xd), xi ∈ Zk for 1 ≤ i ≤ d, where
k = n1/d. Node (x1, . . . , xd) of M is connected to all nodes (x1 +a1, . . . , xd +ad)
where ai ∈ {−1, 0, 1} for 1 ≤ i ≤ d, and all operations are taken modulo k. Note
that, by construction of M , the distance between any two nodes x = (x1, . . . , xd)
and y = (y1, . . . , yd) is max1≤i≤d min{|yi − xi|, k − |yi − xi|}. Hence, the diame-
ter of M is �n1/d/2�. Assume that P is augmented using the harmonic augment-
ing distribution h, and M is augmented using some augmenting distribution ψ.
It is proved in [16] that, for any augmenting distribution ψ for M , there is a
pair s0, t0 ∈ V (M), with 2d−1 − 1 ≤ distM (s0, t0) ≤ 2d such that the expected
number of steps of greedy routing from s0 to t0 is at least Ω(2d) whenever
d <

√
log n. Let d =

√
log n/2. To construct H , we connect the extremity un of

P to the node t0 of M (see Figure 1). In P , we use a slight modification � of the
harmonic distribution h: � is exactly h except at node u1 where �u1(s0) = 1 (i.e.
for any trial of �, the long-range contact of u1 is s0). Consider the augmented
graph model (H, � ∪ ψ), and set e = {u1, s0}.

In (H, � ∪ ψ), greedy routing within P takes O(log2 n) expected number of
steps [23]. Let H ′ = H ∪ {e}. We consider greedy routing using distances in H ′

between the two following sets:

S = {u2, . . . , u√
n} and T = {un−√

n, . . . , un}.

Recovering the Long-Range Links in Augmented Graphs 113

s
0

t
0

M

P

u
1

u
2u

n

...... ...

u
n- n

u
nu

n-1

T S

Fig. 1. Graph H in the proof of Property 1

Hence, for any s ∈ S and t ∈ T , the shortest path from s to t in H ′ goes through
e. Indeed, their shortest path in H is of length at least n − 2

√
n, while in H ′ it

is of length at most 2
√

n+distH(s0, t0)+2 ≤ 2
√

n+2
√

log n/2 +2 using e, which
is less than n − 2

√
n.

Let B = BH(un−√
n, 2

√
n + n1/d). For any node x ∈ S, the probability that

the long-range contact of x is in B is at most O
(1√

n·log n

)
. Therefore, the expected

number of steps required to find such a link in S is at least Ω(
√

n · log n) which
is larger than |S|. As a consequence, with constant probability, greedy routing
from a node s ∈ S to a node t ∈ T , using the distances in H ′, routes to u1 and,
from there to s0. This implies that greedy routing from s to t will take at least
as many steps as greedy routing from s0 to t0 within (M, ψ), that is Ω(2

√
log n)

expected number of steps, which is ω(polylog(n)).
�

Property 1 illustrates that being aware of some of the long-range links may slow
down greedy routing dramatically, at least for some source-destination pairs.
Nevertheless, we show that algorithm extract is accurate enough for the un-
detected long-range links not to cause too much damage. Precisely, we show that
for bounded growth graphs as well as for graphs of bounded doubling dimension,
greedy routing using distances in H ′ can slow down greedy routing in (H, ϕ) only
by a polylogarithmic factor.

Definition 4. A graph G has (q0, α)-expansion if and only if, for any node
u ∈ V (G), and for any r > 0, we have: |BG(u, r)| ≥ q0 ⇒ |BG(u, 2r)| ≤
2α |BG(u, r)|. In the bulk of this paper, we will set q0 = O(1), and refer to α as
the expanding dimension of G, and to 2α as the growth rate of G.

Definition 4 is inspired from Karger and Ruhl [21]. The only difference with Def-
inition 1 in [21] is that we exponentiate the growth rate. Note that, according to
Definition 4, a graph has bounded growth if and only if its expanding dimension
is O(1).

Theorem 1. Let (H, ϕ) ∈ M(n, β) be such that H has (q0, α)-expansion, with
q0 = O(1) and α = O(1). Let G ∈ (H, ϕ). Algorithm extract outputs (H ′, R′)

114 P. Fraigniaud, E. Lebhar, and Z. Lotker

such that (a) E(H) ⊆ H ′, (b) with high probability H ′ contains at most log2β+1 n
links of stretch more than logβ+1 n, and (c) for any source s and target t, the
expected number of steps of greedy routing in G using the metric of H ′ is at most
O(log4+4β+(β+1)α n).

The intuition of the proof is the following. We are given G ∈ (H, ϕ), but Algo-
rithm extract returns a superset H ′ of H . The edges in H ′ \H are undetected
long-range links. Greedy routing performs according to the map H ′. It is known
that greedy routing according to H performs efficiently, but the undetected long-
range links create a distortion of the map. Actually, the long-range links that
really distort the map are those of large stretch. The standard analysis of greedy
routing uses the distance to the target as potential function. For the analysis of
greedy routing using the distorted map H ′, we use a more sophisticated poten-
tial function that incorporates the number of undetected long-range links which
belong to shortest paths between the current node and the target (cf. the notion
of ”concerned indices” in the proof).

Proof. The fact that E(H) ⊆ H ′ and that with high probability H ′ contains
at most log2β+1 n links of stretch more than logβ+1 n is a direct consequence
of Lemma 1. Recall that S ⊆ R denotes the set of long-range links that are of
stretch at least logβ+1 n. Let H ′′ = H ′ \ S. Note that the maximum stretch in
H ′′ is logβ+1 n. For any x ∈ V (H), let L(x) denote the long-range contact of x.
Let Zu be the normalizing constant of the augmenting distribution at node u.
We have the following claim.

Claim 3. For any u ∈ V (G), Zu ≤ 2α log n =def Zmax.

Let us analyze greedy routing in G from s ∈ V (G) to t ∈ V (G) using the dis-
tances in H ′. Assume that S = {{u1, v1}, . . . , {uk, vk}} is the set of the surviving
long-range links (i.e. in R∩H ′) that have stretch more than logβ+1 n, vi being the
long-range contact of ui for all 1 ≤ i ≤ k. For the homogeneity of the notations,
let u0 = v0 = t.

Let τ be the current step of greedy routing from s to t, and x the current
node. We define the concerned index at step τ as the unique index j defined by:

j = min
i∈{1,...,k}

{i |distH′(x, t) = distH′′ (x, ui) + 1 + distH′(vi, t)}.

In other words, {uj, vj} is the first surviving long-range link encountered along
the shortest path from x to t in H ′. If there is no such index, set j = 0.

Claim 4. Let x be the current node of greedy routing, and j be the concerned
index at the current step. If x ∈ BH′′(uj , r), but distH′′ (x, uj) > r/2, and for
some r > 0, then:

Pr{L(x) ∈ BH′′ (uj , r/2)} ≥ 1

24α log1+α(β+1) n
,

and if L(x) ∈ BH′′(uj , r/2) then greedy routing routes inside BH′′ (uj, r/2) at
the next step.

Recovering the Long-Range Links in Augmented Graphs 115

Claim 5. Let x and x′ be two nodes on the greedy route reached at respective
steps τ and τ ′, τ < τ ′. Assume that the concerned index at steps τ and τ ′ is
the same, denoted by j, j ≤ k = |S|. If x ∈ BH′′ (uj, r) for some r > 0, then
x′ ∈ BH′′ (uj , r).

For any 0 ≤ i ≤ log n, 0 ≤ j ≤ k, and τ > 0, let E i
j(τ) be the event: ”greedy

routing from s to t already entered BH′′(uj , 2i) during the first τ steps”. Note
that, for any 0 ≤ j ≤ k and any τ > 0, E0

j (τ) ⊆ . . . ⊆ E log n
j (τ). We describe the

current state of greedy routing at step τ by the event E i0
0 (τ)∩ . . . ∩E ik

k (τ) where
for every 0 ≤ j ≤ k, ij = min{i | E i

j(τ) occurs}.
Note that greedy routing has reached t at step τ if and only if E0

0 (τ) has
occured. Clearly, at step 0 (in s), the event E log n

0 (0) ∩ E log n
1 (0) . . . ∩ E log n

k (0)
occurs.

Claim 6. Assume that the state of greedy routing at step τ is E i0
0 (τ)∩. . .∩E ik

k (τ),
for some i0, . . . ik ∈ {0, . . . , log n}. Then, after at most (k+1) ·24α log1+α(β+1) n
steps on expectation, there exists an index 0 ≤ � ≤ k such that the state of greedy
routing is Ej0

0 (τ ′) ∩ . . . ∩ Ej�

� (τ ′) . . . ∩ Ejk

k (τ ′), with js ≤ is for all s, and j� < i�,
τ ′ > τ .

Let X be the random variable counting the number of steps of greedy routing
from s to t. As noticed before, E(X) is at most the expected number of steps τ to
go from state E log n

0 (0)∩E log n
1 (0) . . .∩E log n

k (0) to state E0
0 (τ)∩E i1

1 (τ) . . .∩E ik

k (τ),
for some i1, . . . ik ∈ {0, . . . , log n}. From Claim 6, we get: E(X) ≤ (k + 1) log n ·
((k + 1) · 24α log1+α(β+1) n). And, from Lemma 1, Pr{k > log2β+1 n} ≤ 1/n.
Therefore, we have:

E(X) = E(X | k ≤ log2β+1 n) · Pr{k ≤ log2β+1 n}
+ E(X | k > log2β+1 n) · Pr{k > log2β+1 n}

≤ 24α log2+α(β+1)α+2(2β+1) n + n · (1/n) = O(log4+4β+(β+1)α n).

�

Remark. Graphs of bounded expanding dimension and graphs of bounded dou-
bling dimension are very closely related. Indeed, it can be shown that, assigning
a specific weight function to a graph of bounded doubling dimension (the dou-
bling measure of its metric), it can be made bounded growth by considering the
ball sizes with nodes multiplicity corresponding to their weight [18]. Moreover,
this weight function can be computed in polynomial time [19]. This allows us to
extend Theorem 1 to graphs of bounded doubling dimension, up to a constant
factor change in the exponent of greedy routing performances.

4 Impossibility Results

Algorithm extract is an extreme case in the class of local maximum likelihood
algorithms. Indeed, if e = {u, v} ∈ E(H), one must have 1

n |NG(u)∩ NG(v)| ≥ c.

116 P. Fraigniaud, E. Lebhar, and Z. Lotker

Hence, if 1
n |NG(u) ∩ NG(v)| < c, then Pr(G | e ∈ E(H)) = 0, and therefore it

would identify e as a long-range link. Algorithm extract is only failing in the
detection of few long-range links with large stretch (Lemma 1) because, for a
link e = {u, v} with large stretch, Pr(1

n · |NG(u)∩NG(v)| ≥ c) is small. We show
that in absence of clustering, the number of long-range links with large stretch
that are not detected can be much higher, for any local maximum likelihood
algorithm.

This impossibility result even holds in the case of a (2n+1)-node cycle C2n+1

augmented using the harmonic distribution h
(n)
u (v) = 1/(2Hn · distHn(u, v)),

where Hn =
∑n

i=1
1
i is the nth harmonic number, and even if the extraction

algorithm is designed specifically for ring base graphs augmented with the har-
monic distribution.

Note that h(n) is density-based, but C2n+1 has a clustering coefficient equal
to zero. It was proved in [23] that greedy routing in (C2n+1, h

(n)) performs in
O(log2 n) expected number of steps between any pair.

Theorem 2. For any 0 < ε < 1/5, any local maximum likelihood algorithm for
recovering the base graph C2n+1 in G ∈ (C2n+1, h

(n)) fails in the detection of an
expected number Ω(n5ε/ logn) of long-range links of stretch Ω(n1/5−ε).

Due to lack of place, the proof of the theorem is omitted.

5 Conclusion

This paper is a first attempt to demonstrate the feasibility of recovering, at
least partially, the base graph H and the long-range links R of an augmented
graph G = H + R. Our methodology assumes some a priori knowledge about
the structure of the base graph (of bounded doubling dimension, and with high
clustering coefficient) and of the long-range links (resulting from a trial according
to a density-based distribution). It would be interesting to check whether these
hypotheses could be relaxed, and if yes up to which extend.

Acknowledgments. The authors are thankful to Dmitri Krioukov for having
raised to them the question of how to extract the based graph of an augmented
graph, and for having pointed to them several relevant references. They are also
thankful to Augustin Chaintreau and Laurent Viennot for fruitful discussions.

References

1. Abraham, I., Gavoille, C.: Object location using path separators. In: 25th ACM
Symp. on Principles of Distributed Computing (PODC), pp. 188–197 (2006)

2. Abraham, I., Malkhi, D., Dobzinski, O.: LAND: Stretch (1 + ε) locality aware
networks for DHTs. In: ACM-SIAM Symposium on Discrete Algorithms (SODA)
(2004)

3. Andersen, R., Chung, F., Lu, L.: Modeling the small-world phenomenon with local
network flow. Internet Mathematics 2(3), 359–385 (2006)

Recovering the Long-Range Links in Augmented Graphs 117

4. Achlioptas, D., Clauset, A., Kempe, D., Moore, C.: On the bias of Traceroute sam-
pling, or: power-law degree distributions in regular graphs. In: 37th ACM Sympo-
sium on Theory of Computing (STOC) (2005)

5. Aspnes, J., Diamadi, Z., Shah, G.: Fault-tolerant routing in peer-to-peer systems.
In: 21st ACM Symp. on Principles of Distributed Computing (PODC), pp. 223–232
(2002)

6. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

7. Barrière, L., Fraigniaud, P., Kranakis, E., Krizanc, D.: Efficient routing in networks
with long-range contacts. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp.
270–284. Springer, Heidelberg (2001)

8. Chung, F., Lu, L.: The small world phenomenon in hybrid power law graphs. Lect.
Notes Phys. 650, 89–104 (2004)

9. Dodds, P., Muhamad, R., Watts, D.: An experimental study of search in global
social networks. Science 301(5634), 827–829 (2003)

10. Duchon, P., Hanusse, N., Lebhar, E., Schabanel, N.: Could any graph be turned
into a small-world? Theoretical Computer Science 355(1), 96–103 (2006)

11. Duchon, P., Hanusse, N., Lebhar, E., Schabanel, N.: Towards small world emer-
gence. In: 18th Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA), pp. 225–232 (2006)

12. Flammini, M., Moscardelli, L., Navarra, A., Perennes, S.: Asymptotically opti-
mal solutions for small world graphs. In: Fraigniaud, P. (ed.) DISC 2005. LNCS,
vol. 3724, pp. 414–428. Springer, Heidelberg (2005)

13. Fraigniaud, P.: Greedy routing in tree-decomposed graphs: a new perspective on the
small-world phenomenon. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS,
vol. 3669, pp. 791–802. Springer, Heidelberg (2005)

14. Fraigniaud, P., Gavoille, C., Kosowski, A., Lebhar, E., Lotker, Z.: Universal aug-
mentation schemes for network navigability: overcoming the

√
n-barrier. In: 19th

Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)
(2007)

15. Fraigniaud, P., Gavoille, C., Paul, C.: Eclecticism shrinks even small worlds. In:
Proceedings of the 23rd ACM Symposium on Principles of Distributed Computing
(PODC), pp. 169–178 (2004)

16. Fraigniaud, P., Lebhar, E., Lotker, Z.: A doubling dimension threshold Θ(log log n)
for augmented graph navigability. In: Azar, Y., Erlebach, T. (eds.) ESA 2006.
LNCS, vol. 4168, pp. 376–386. Springer, Heidelberg (2006)

17. Gupta, A., Krauthgamer, R., Lee, J.: Bounded geometries, fractals, and low- dis-
tortion embeddings. In: Proceedings of the 44th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pp. 534–543 (2003)

18. Heinonen, J.: Lectures on analysis on metric spaces. Springer, Heidelberg (2001)
19. Har-Peled, S., Mendel, M.: Fast Construction of Nets in Low Dimensional Metrics,

and Their Applications. SICOMP 35(5), 1148–1184 (2006)
20. Iamnitchi, A., Ripeanu, M., Foster, I.: Small-world file-sharing communities. In:

23rd Joint Conference of the IEEE Computer and Communications Societies (IN-
FOCOM), pp. 952–963 (2004)

21. Karger, D., Ruhl, M.: Finding nearest neighbors in growth-restricted metrics. In:
34th ACM Symp. on the Theory of Computing (STOC), pp. 63–66 (2002)

22. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory, ch.
7. Prentice Hall, Englewood Cliffs (1993)

23. Kleinberg, J.: The small-world phenomenon: an algorithmic perspective. In: 32nd
ACM Symp. on Theory of Computing (STOC), pp. 163–170 (2000)

118 P. Fraigniaud, E. Lebhar, and Z. Lotker

24. Kleinberg, J.: Small-World Phenomena and the Dynamics of Information. Ad-
vances in Neural Information Processing Systems (NIPS) 14 (2001)

25. Kleinberg, J.: Complex networks and decentralized search algorithm. In: Nevan-
linna prize presentation at the International Congress of Mathematicians (ICM),
Madrid (2006)

26. Krioukov, D., Fall, K., Yang, X.: Compact routing on Internet-like graphs. In: 23rd
Conference of the IEEE Communications Society (INFOCOM) (2004)

27. Kumar, R., Liben-Nowell, D., Tomkins, A.: Navigating Low-Dimensional and Hier-
archical Population Networks. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS,
vol. 4168. Springer, Heidelberg (2006)

28. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., Tomkins, A.: Geographic
routing in social networks. In: Proc. of the Natl. Academy of Sciences of the USA,
vol. 102/3, pp. 11623–11628

29. Lebhar, E., Schabanel, N.: Searching for Optimal paths in long-range contact net-
works. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 894–905. Springer, Heidelberg (2004)

30. Manku, G., Naor, M., Wieder, U.: Know Thy Neighbor’s Neighbor: The Power
of Lookahead in Randomized P2P Networks. In: 36th ACM Symp. on Theory of
Computing (STOC), pp. 54–63 (2004)

31. Martel, C., Nguyen, V.: Analyzing Kleinberg’s (and other) Small-world Models. In:
23rd ACM Symp. on Principles of Distributed Computing (PODC), pp. 179–188
(2004)

32. Martel, C., Nguyen, V.: Analyzing and characterizing small-world graphs. In: 16th
ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 311–320 (2005)

33. Martel, C., Nguyen, V.: Designing networks for low weight, small routing diameter
and low congestion. In: 25th Conference of the IEEE Communications Society
(INFOCOM) (2006)

34. Milgram, S.: The Small-World Problem. Psychology Today, pp. 60–67 (1967)
35. Newman, M.: The Structure and Function of Complex Networks. SIAM Review 45,

167–256 (2003)
36. Newman, M., Barabasi, A., Watts, D. (eds.): The Structure and Dynamics of Com-

plex Networks. Princeton University Press, Princeton (2006)
37. Pastor-Satorras, R., Vespignani, A.: Evolution and Structure of the Internet: A

Statistical Physics Approach. Cambridge University Press, Cambridge (2004)
38. Slivkins, A.: Distance estimation and object location via rings of neighbors. In:

24th Annual ACM Symposium on Principles of Distributed Computing (PODC),
pp. 41–50 (2005)

39. Watts, D., Strogatz, S.: Collective dynamics of small-world networks. Nature 393,
440–443 (1998)

Computing Frequent Elements Using Gossip

Bibudh Lahiri∗ and Srikanta Tirthapura�

Iowa State University, Ames, IA, 50011, USA
{bibudh,snt}@iastate.edu

Abstract. We present algorithms for identifying frequently occurring
elements in a large distributed data set using gossip. Our algorithms do
not rely on any central control, or on an underlying network structure,
such as a spanning tree. Instead, nodes repeatedly select a random part-
ner and exchange data with the partner – if this process continues for a
(short) period of time, the desired results are computed, with probabilis-
tic guarantees on the accuracy. Our algorithm for frequent elements is
built by layering a novel small space “sketch” of data over a gossip-based
data dissemination mechanism. We prove that the algorithm converges
to the approximate frequent elements with high probability, and provide
bounds on the time till convergence. To our knowledge, this is the first
work on computing frequent elements using gossip.

1 Introduction

We are increasingly faced with data-intensive decentralized systems, such as large
scale peer-to-peer networks, server farms with tens of thousands of machines,
and large wireless sensor networks. With such large networks comes increasing
unpredictability; the networks are constantly changing, due to nodes joining
and leaving, or due to node and link failures. Gossip is a type of communication
mechanism that is ideally suited for distributed computation on such unstable,
large networks. Gossip-based distributed protocols do not assume any underlying
structure in the network, such as a spanning tree, so, there is no overhead of
sub-network formation and maintenance. A gossip protocol proceeds in many
“rounds” and in each round, a node contacts a few randomly chosen nodes in
the system and exchanges information with them. The randomization inherently
provides robustness, and surprisingly, often leads to fast convergence times. The
use of gossip-based protocols for data dissemination and aggregation was first
proposed by Demers et al. [1].

We focus on the problem of identifying frequent data elements in a network
using gossip. Consider a large peer-to-peer network that is distributing content,
such as news or software updates. Suppose that the nodes in the network (or
the network administrators) wish to track the identities of the most frequently
accessed items in the network. The relevant data for tracking this aggregate are
the frequencies of accesses of different items. However, this data is distributed

� Supported in part by NSF grant CNS 0520102 and by ICUBE, Iowa State University.

A. Shvartsman and P. Felber (Eds.): SIROCCO 2008, LNCS 5058, pp. 119–130, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

120 B. Lahiri and S. Tirthapura

throughout the network – in fact, even the number of accesses to a single item
may not be available at any single point in the network. Our gossip-based algo-
rithm for frequent elements can be used to track the most frequently accessed
items in a low-overhead, decentralized manner. Another application of tracking
frequent items is in the detection of a distributed denial of service (DDoS) at-
tack, where many malicious nodes may team up to simultaneously send excessive
traffic towards a single victim (typically a web server), so that legitimate clients
are denied service. Detecting a DDoS attack is equivalent to finding that the
total number of accesses to some server has exceeded a threshold. A distributed
frequent elements algorithm can help by tracking the most frequently accessed
web servers in a distributed manner, and noting if these frequencies are abnor-
mally large. With a gossip-based algorithm this computation can proceed in a
totally decentralized manner.

We consider two variants of the frequent elements problem, with absolute
and relative thresholds. In the absolute threshold version, the task is to iden-
tify all elements whose frequency of occurrence is at least an absolute number
(threshold), which is an user-defined parameter. In the relative threshold version,
the task is to identify all elements whose frequency of occurrence is more than
a certain fraction of the total size of the data, where the fraction (the relative
threshold) is an user-defined parameter. In a distributed dynamic network, these
two problems turn out to be rather different from each other.

Our algorithms work without explicitly tabulating the frequencies of different
elements at any single place in the network. Instead, the distributed data is
represented by a small space “sketch” that is propagated and updated via gossip.
A sketch is a space-efficient representation of the input, which is specific to
the aggregate being computed, and captures the essence of the data for our
purposes. The space taken by the sketch can be tuned as a function of the
desired accuracy. A complication with gossip is that since it is an unstructured
form of communication, it is possible for the same data item to be inserted
into the sketch multiple times as the sketch propagates. Due to this, a technical
requirement is that the sketch should be able to handle duplicate insertions, i.e.
it should be duplicate-insensitive. If the gossip proceeds long enough, the sketch
can be used to identify all elements whose frequency exceeds the user defined
threshold. At the same time, elements whose popularity is significantly below
the threshold will be omitted (again, with high probability).

To summarize our contributions, we present the first work on computing fre-
quent elements in a distributed data set using gossip. We present randomized
algorithms for both the absolute threshold and the relative threshold versions
of the problem. For each algorithm, we present a rigorous analysis of the cor-
rectness, and the time till convergence. Our analysis show that gossip-based
algorithms converge quickly, and can maintain frequent elements in a network
with a reasonable communication overhead. We also note that similar techniques
can be used in estimating the number of distinct data items in the network. Due
to space limitations, details of estimating the number of distinct elements are
not presented here and can be found in the full version of the paper [2].

Computing Frequent Elements Using Gossip 121

With a gossip protocol, communication is inherently randomized, and a node
can never be certain that the results on hand are correct. However, the longer
the protocol runs, the closer the results get to the correct answer, and we are
able to quantify the time taken till the protocol converges to the correct answer,
with high probability. Gossip algorithms are suitable for applications which can
tolerate such relaxed consistency guarantees. Examples include a network mon-
itoring application, which is running in the background, maintaining statistics
about frequently requested data items, or the most frequently observed data in
a distributed system. In such an application, a guaranteed accurate answer may
not be required, and an approximate answer may suffice.

1.1 Related Work

Demers et al. [1] were the first to provide a formal treatment of gossip protocols
(or “epidemic algorithms” as they called them) for data dissemination. Kempe,
Dobra and Gehrke [3] proposed algorithms for computing the sum, average, ap-
proximately uniform random sampling and quantiles using uniform gossip. Their
algorithm for quantiles are based on their algorithm for the sum – they choose
a random element and count the number of elements that are greater and lesser
than the chosen element, and recurse on smaller data sets until the median is
found. Thus their algorithms need many instances of “sum” computations to
converge before the median is found. A similar approach could potentially be
used to find frequent elements using gossip. In contrast, our algorithms for fre-
quent elements are not based on repeated computation of the sum, and converge
faster.

Much recent work [4,5,6] has focused on computing “separable functions”
using gossip. A separable function is one that can be expressed as the sum of
individual functions of the node inputs. For example, the function “count” is
separable, and so is the function “sum”. However, the set of frequent elements is
not a separable function. Hence, these techniques do not apply to our problem.

The problem of identifying frequent elements in data has been extensively
studied [7,8,9] in the database, data streams and network monitoring communi-
ties (where frequent elements are often called “heavy-hitters”). The early work
in this is due to Misra and Gries [7], who proposed a deterministic algorithm to
identify frequent elements in a stream, followed by Manku and Motwani [8], who
gave randomized and deterministic algorithms for tracking frequent elements in
limited space. The above were algorithms for a centralized setting.

In a distributed setting, Cao and Wang [10] proposed an algorithm to find
the top-k elements, where they first made a lower-bound estimate for the kth

value, and then used the estimate as a threshold to prune away elements which
should not qualify as top-k. Zhao et al. [11] proposed a sampling-based and a
counting-sketch-based scheme to identify globally frequent elements. Manjhi et
al. [12] present an algorithm for finding frequent items on distributed streams,
through a tree-based aggregation. Keralapura, Cormode and Ramamirtham [13]
proposed an algorithm for continuously maintaining the frequent elements over
a network of nodes. The above algorithms sometimes assume the presence of a

122 B. Lahiri and S. Tirthapura

central node, or an underlying network structure such as a spanning tree [12,13],
and hence are not applicable where the underlying network does not guarantee
reliability or robustness.

1.2 Organization of the Paper

In Section 2, we state our model and the problem more precisely. The algorithm
and analysis for the case of absolute threshold in the asynchronous time model is
presented in Section 3 and the case of relative threshold is presented in Section 4.
Due to space constraints, we only present sketches of the proofs. Detailed proofs
can be found in the full version of the paper [2].

2 Model

We consider a distributed system with N nodes numbered from 1 to N . Each
node i holds a single data item mi. Without loss of generality, we assume that
mi ∈ {1, 2, . . . , m} is an integer representing an item identifier. For data item
v ∈ {1, . . . , m}, the frequency of v is denoted by fv, and is defined as the number
of nodes that have data item v, i.e. fv = |{j ∈ [N] : mj = v}|. Note that fv

may not be available locally at any node, in fact determining fv itself requires a
distributed computation. The task is to identify those elements that have large
frequencies. We note that though we describe our algorithms for the case of one
item per node, they can be easily extended to the case when each node has a
(multi)set of items.

We consider the scenario of uniform gossip, which is the basic, and most
commonly used model of gossip. Whenever a node i transmits, it chooses the
destination of the message to be a node selected uniformly at random from among
all the current nodes in the system. The selection of the transmitting node is
done by the distributed scheduler, described later in this section. We consider
two variants of the problem, depending on how the thresholds are defined.

Absolute Threshold. The user gives an absolute frequency threshold k > 1
and approximation error λ (λ < k). An item v is considered a frequent item if
fv ≥ k, and v is an infrequent item if fv < k −λ. Note that with a data set of N
elements there may be up to N/k frequent elements according to this definition.

Relative Threshold. In some cases, the user may not be interested in an abso-
lute frequency threshold, but may only be interested in identifying items whose
relative frequency exceeds a given threshold. More precisely, given a relative
threshold φ (0 < φ < 1), approximation error ψ (0 < ψ < φ), an item v is
considered to be a frequent item if fv ≥ φN , and v is considered an infrequent
item if fv < (φ − ψ)N . According to this definition, there may be no more than
1/φ frequent items.

In a centralized setting, when all items are being observed at the same loca-
tion, the above formulations of relative and absolute thresholds are equivalent,
since the number of items N is known, and any absolute threshold can be con-
verted into a relative threshold, or vice versa. However, in a distributed setting,

Computing Frequent Elements Using Gossip 123

a threshold for relative frequency cannot be locally converted by a node into a
threshold on the absolute frequency, since the user in a large distributed system
may not know the number of nodes or the number of data items in the system
accurately enough. Thus, we treat these two problems separately. The lack of
knowledge of the network size N does not, though, prevent the system from
choosing gossip partners uniformly at random. For example, Gkantsidis et al.
[14] show how random walks can provide a good approximation to uniform sam-
pling for networks where the gap between the first and the second eigenvalues
of the transition matrix is constant.

At the end of the gossip, the following probabilistic guarantees must hold,
whether for absolute or relative thresholds. Let δ be a user-provided bound on
the error probability (0 < δ < 1). With probability at least (1 − δ), every node
reports every frequent item. With probability at least (1−δ), no node reports an
infrequent item. In other words, the latter statement implies that the probability
that an infrequent item is incorrectly reported by a node in the system is less
than δ. Note that we present randomized algorithms, where the probabilistic
guarantees hold irrespective of the input.

Time Model. For gossip-based protocols, time is usually divided into non-
overlapping rounds. We consider the asynchronous model, where in each round,
a single source node, chosen uniformly at random out of all N nodes, transmits to
another randomly chosen receiver. The time complexity is the number of rounds,
or equivalently, the number of transmissions, since in each round there is only
one transmission. We consider the synchronous model in the full version of
the paper.

Performance Metrics. We evaluate the quality of our protocols via the fol-
lowing metrics: the convergence time, which is defined as the number of rounds
of gossip till convergence, and the communication complexity, which is defined
as the number of bytes exchanged till convergence.

3 Frequent Elements with an Absolute Threshold

We now present an algorithm in the asynchronous model for identifying elements
whose frequency is greater than a user specified absolute threshold k. Let S =
{mi : i ∈ [N]} denote the multi-set of all input values. The goal is to output
all elements v such that fv ≥ k without outputting any element v such that
fv < k − λ. We first describe the high level intuition.

Our algorithm is based on random sampling. The elements of S are sampled
in a distributed manner, and the sampled elements are disseminated to all nodes
using gossip – the cost of doing so is small, since the random sample is typi-
cally much smaller than the size of the population. The sampling also ensures
that frequent elements are exchanged more often during the later gossip phase.
Intuitively, suppose we sample each element from S into a set T with probability

124 B. Lahiri and S. Tirthapura

1/k. For a frequent element v with fv ≥ k, we (roughly) expect one or more
copies of v to be included within T . Similarly, for an infrequent element u with
fu < k − λ, we expect that no copy of u will be included in T . However, some
infrequent elements may get “lucky” and may be included in T and similarly,
some frequent elements may not make it to T . The probabilities of these events
decrease as the sample size increases.

To refine this sampling scheme, we sample with a probability that is a little
larger than 1/k, say c/k for some parameter c. Finally, we select those elements
that occur at least r times within T , for some parameter r < c that will be
decided by the analysis. It turns out that c and r will need to depend on the
approximation error λ as well as the threshold k. The smaller λ is, the greater
should be the sampling probability, since we need to make a more precise distinc-
tion between the frequencies of frequent and infrequent elements. In the actual
algorithm, we use a sampling probability of 12k

λ2 ln 2
δ – note that this is Ω(1

k)
since λ < k and hence k

λ2 > 1
k .

The precise algorithm for sampling and gossip is shown in Figure 1. There are
three parts to this algorithm (and all others that we describe). The first part is
the Initialization, where each node initialized its own sketch, which is usually
through drawing a random sample. The next part is the Gossip portion, where
the nodes in the system exchange sketches with each other. The algorithm only
describes what happens during each round of gossip – it is implicit that such
computations repeat forever. The third part is the Query, where we describe
how a query for frequent elements is answered using the sketch. The accuracy of
the result improves as further rounds of gossip occur. Through our analysis, we
give a bound on the number of rounds after which frequent elements are likely
to be found at all nodes.

Input: Data item mi, error probability δ, frequency threshold k, approximation error λ

1. Initialization
(a) Choose ρ as a uniformly distributed random number in (0, 1).
(b) If ρ < 12k

λ2 ln 2
δ

then Si ← {(i, mi)}, else Si ← Φ /* null set */
2. Gossip

In each round of gossip:
(a) If sketch Sj received from node j then Si ← Si ∪ Sj

(b) If node i is selected to transmit, then select node j uniformly at random from
{1, . . . , N} and send Si to j

3. Query
When asked for the frequent elements, report all data items which occur more than

r = 12k2

λ2 (1 − λ
2k

) ln 2
δ

times in Si as frequent elements.

Fig. 1. Gossip algorithm at node i for finding the frequently occurring elements with
an absolute threshold k

Computing Frequent Elements Using Gossip 125

3.1 Analysis

We now analyze the correctness and the time complexity (proof sketches only)
of the algorithm in Figure 1.

Lemma 1. False Negative. If v is an element with fv ≥ k, then with probability
at least 1 − δ, v is returned as a frequent element by every node after 20N ln N
rounds.

Sketch of proof: A false negative can occur in one of two ways. (1)Either too
few copies of v were sampled during initialization or (2)The sampled copies of
v were not disseminated to all nodes during the gossip. We show that the first
event is unlikely by an analysis of the sampling process using Chernoff bounds.
We show that the second event is also very unlikely through an analysis of the
asynchronous gossip in Lemma 4. ��

Lemma 2. False Positive. If u is an element with fu ≤ k−λ, where k
3
4 ≤ λ < k,

then the probability that u is returned by some node as a frequent element is no
more than δ.

Sketch of proof: A false positive can occur if both the following events occur:
(1)r or more copies of u were sampled initially and (2)all r copies of u reach some
node in the network through gossip. We show that the first event is very unlikely,
if fv ≤ k − λ, and hence the intersection of the events is also unlikely. ��

Now that we have proved Lemmas 1 and 2, it is natural to ask what happens
to an element with frequency in the range [k − λ, k) of length λ. With our
algorithm, such elements could be reported as frequent items, or not. Clearly, a
smaller value of λ implies less uncertainty, but this comes at the cost of increased
sampling probability, and hence greater communication complexity of gossip. For
example, with k = 108 and λ = 5×106, the approximation error with respect to
k is 5%. All elements with frequency greater than 108 will be reported (w.h.p)
and all elements with frequency below 0.95 × 108 will not be reported (w.h.p.,
once again), and the sampling probability is approximately 4.8 × 10−5 × ln 2

δ .
This is the fraction of input items that are gossiped through the network in
finding the frequent elements in the distributed data set.

Analysis of the Gossip. We now shift our attention to the gossip mechanism
itself. Let T denote the multi-set of all items sampled during initialization T ⊆ S
and |T | ≤ N . Consider a single sampled item θ ∈ T . Let Tθ be defined as the
number of rounds till θ has been disseminated to all nodes in the network.

Lemma 3. E[Tθ] = 2N ln N + O(N).

Sketch of proof: Let ξt be the set of nodes that have θ after t rounds. Thus
ξ0 has only one node (the one that sampled θ during the initialization step).
For t = 1 . . .N − 1, let random variable Xt be the number of rounds required to
increase |ξ| from t to t+1. We can write Tθ = X1 +X2 + · · ·+XN−1. By noting
that each Xt is a geometric random variable and using linearity of expectation
we can arrive at the desired result. Further details are in the full version. ��

126 B. Lahiri and S. Tirthapura

Our proof for high-probability bounds on Tθ use the following result about a
sharp concentration for the coupon collector problem. Suppose there are coupons
of M distinct types, and one has to draw coupons (with replacement) at random
until at least one coupon of each type has been collected. Initially, it is very
easy to select a type not yet chosen, but as more and more types get chosen,
it becomes increasingly difficult to get a coupon of a type not yet chosen. The
following result can be found in standard textbooks (for example, Motwani and
Raghavan [15]).

Theorem 1 (Folklore). Let the random variable C denote the number of trials
to collect at least one coupon of each of M types. Then, for any constant c ∈ R,
limM→∞ Pr[C > M ln M + cM] = 1 − e−e−c

.

Lemma 4. limN→∞ Pr(Tθ > 20N ln N) = O(1
N2)

Sketch of proof: The dissemination of θ by gossip can be divided into two
phases. The first phase starts when θ is at a single node and continues until it
has reached N

2 distinct nodes. The second phase starts after θ has reached N
2

nodes and continues until it reaches N nodes. In the first phase, in each round
of gossip, it is less likely to find a source node that has θ and at the same time,
it is more likely to find a destination that does not have θ. Once θ has reached
N
2 nodes, the situation reverses. We analyze the number of rounds required for
these two phases separately. For each phase, we bound the random variable that
defines the number of rounds in the phase by a simpler random variable that can
be analyzed with the help of a coupon-collector type of argument. Combining
the results from the two phases yields the desired result. ��

For an item v, let Tv denote the number of rounds required to disseminate all
copies of v to all nodes.

Lemma 5. limN→∞ Pr[Tv > 20N ln N] = O(1
N)

Proof. The proof follows from Lemma 4 using a union bound, and the fact that
there are no more than N copies of v.

Lemmas 1, 2 and 5 together lead to the following theorem about the correctness
of the algorithm.

Theorem 2. Suppose the distributed algorithm in Figure 1 is run for 20N ln N
rounds. Then, with probability at least 1 − δ, any data item with k or more
occurrences will be identified as a frequent element at every node. With probability
at least 1−δ, any data item with less than k−λ occurrences will not be identified
as a frequent element at any node.

Communication Complexity. We next analyze the communication complex-
ity, i.e. the number of bytes transmitted during the gossip. During the algorithm,
the sizes of the messages exchanged start from one item and grow as the algo-
rithm progresses. To avoid the complexity of dealing with different message sizes,

Computing Frequent Elements Using Gossip 127

we separately analyze the total number of bytes contributed to gossip by each
sampled item, and add these contributions together. Consider any sampled item
θ. We assume that transmitting any item (i, mi) takes a constant number of
bytes. Let random variable B denote the number of bytes it takes to disseminate
θ among all nodes.

Lemma 6. E[B] = O(N ln N)

Sketch of proof: Let ξt be the set of nodes that have θ after t rounds. In
each round of gossip, θ may or may not be transmitted. Further each time θ is
transmitted, |ξ| increases only if the destination of the message is a node which
is not already in ξt. We analyze B as the number of transmissions of θ till ξ
includes all nodes. The details of the proof, using conditional probabilities, are
presented in the full version. ��

We can similarly get a high probability bound on B (proofs in full version).

Lemma 7. Pr[B > 3N ln N] = O(1
N2).

Let Y denote the total number of bytes that need to be exchanged for the whole
protocol until the frequent elements have been identified. By combining Lemma
7 with an estimate on the number of sampled items, we get the following result
about the communication complexity of the algorithm in Figure 1.

Theorem 3 (Communication Complexity for Absolute Threshold)
With high probability, Y = O(N2k

λ2 ln 1
δ ln N)

4 Frequent Elements with Relative Threshold

Given thresholds φ and ψ, where ψ < φ, the goal is to identify all elements v
such that fv ≥ φN and no element u such that fu < (φ − ψ)N . Unlike the case
of absolute threshold, there is no fixed probability that a node can use to sample
data elements locally. For the same relative frequency threshold, the absolute
frequency threshold (φN), as well as the approximation error (ψN) increases
with N . Thus if φ and ψ are kept constant and N increases, then a smaller
sampling probability will suffice, because of the analysis in 3. Since we do not
have prior knowledge of N , we need a more “adaptive” method of sampling where
the sampling probability decreases as more elements are encountered during
gossip.

To design our sketch, we use an idea similar to min-wise independent permu-
tations [16]. Each data item mi, i = 1 . . .N is assigned a weight wi, which is
a random number in the unit interval (0, 1). The algorithm maintains a sketch
T of (mi, wi) tuples that have the t smallest weights wi. The value of t can be
decided independent of the population size N . The intuition is that if an element
v has a large relative frequency, then v must occur among the tuples with the
smallest weight. Maintaining these minimum-weight elements through gossip is
easy, and if we choose a large enough sketch, the likelihood of a frequent element

128 B. Lahiri and S. Tirthapura

appearing in the sketch a sufficient number of times is very high. We identify
a value m as a frequent item if there are at least (φ − ψ

2)t tuples in T with
mi = m; otherwise, m is not identified as a frequent element. The algorithm for
the asynchronous model is described in Figure 2. The threshold t is chosen to
be O(1

ψ2 ln(1
δ).

Input: Data item mi; error probability δ, relative frequency threshold φ, approximation
error ψ < φ

1. Initialization:
(a) t ← 128

ψ2 ln(3
δ
)

(b) Choose wi as a uniformly distributed random number in the real interval (0, 1);
set Si ← {(mi, wi)}

2. Gossip
In each round of gossip:
(a) If sketch Sj is received from node j then

i. Si ← Si ∪ Sj

ii. If |Si| > t then retain t elements of Si with smallest weights
(b) If node i is selected to transmit, then select node j uniformly at random and

send Si to j
3. Query

When queried for the frequent elements, report every value v such that at least
(φ − ψ

2)t (value, weight) tuples exist in Si with value equal to v

Fig. 2. Gossip algorithm at node i for finding the frequently occurring elements with
a relative threshold

4.1 Analysis

The proofs of most of the following lemmas appear in the full version. Let τ
denote the tth minimum element among the N random values {wi, i = 1 . . .N}.
The next lemma shows that τ is sharply concentrated around t

N .

Lemma 8. For t = 128
ψ2 ln(3

δ), τ satisfies the following properties: (1) Pr[τ <
t
N (1 − ψ

4)] < δ
3 and

(2) Pr[τ > t
N (1 + ψ

4)] < δ
3

We now present a bound on the dissemination time of the smallest weights. Let
Tt denote the time taken for the t smallest weights to be disseminated to all
nodes.

Lemma 9. Pr[Tt > 20N lnN] ≤ O(1
N).

Proof. The proof follows by using the union bound along with Lemma 4.

The following lemmas provide upper bounds on the probabilities of finding a
false negative and a false positive respectively, by the algorithm described in
Figure 2.

Computing Frequent Elements Using Gossip 129

Lemma 10. Suppose the distributed algorithm in Figure 1 is run for 20N ln N
rounds. Then, if v is a frequent element, i.e. fv ≥ φN , then with probability at
least 1 − δ, v is identified by every node as a frequent element.

Sketch of proof: Two events need to happen for v to be recognized as a fre-
quent element. (1) Enough copies of v must occur among the t smallest weights,
and (2) The t smallest weight elements must be disseminated to all nodes via
gossip. In the full proof, we show that both these events are very likely. ��

Lemma 11. Suppose the distributed algorithm in Figure 1 is run for 20N ln N
rounds. If u is an infrequent element, i.e. fu < (φ − ψ)N , then, with probability
at least 1 − δ, u is not identified by any node as a frequent element.

Sketch of proof: A false positive can happen if both the following events oc-
cur. (1) There are an unusually high number of copies of u among the elements
with the τ smallest weights, and (2) all these copies are disseminated to all
nodes. We show that the first event is highly unlikely, and so is the probability
of a false positive. ��

Combining Lemmas 11, 10 and 9 we get the following theorem.

Theorem 4. Suppose the distributed algorithm in Figure 2 is run for 20N ln N
rounds. Then, with probability at least 1 − δ, any data item with φN or more
occurrences will be identified as a frequent item at every node. Similarly, with
probability at least 1− δ, any data item with less than (φ−ψ)N occurrences will
not be identified as a frequent item at any node.

Since the size of the sketch at any time during gossip is at most t, we get the
following result on the communication complexity, using Lemma 9.

Theorem 5. The number of bytes exchanged by the algorithm in Figure 2 till
the frequent elements are identified is at most O(1

ψ2 ln(1
δ)N ln N), with probability

at least 1 − O(1
N).

References

1. Demers, A.J., Greene, D.H., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis,
H.E., Swinehart, D.C., Terry, D.B.: Epidemic algorithms for replicated database
maintenance. In: Proceedings of the Principles of Distibuted Computing (PODC),
pp. 1–12 (1987)

2. Lahiri, B., Tirthapura, S.: Computing frequent elements using gossip. Technical
report, Dept. of Electrical and Computer Engineering, Iowa State University (April
2008), http://archives.ece.iastate.edu/archive/00000415/01/gossip.pdf

3. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate informa-
tion. In: Proceedings of the 44th Symposium on Foundations of Computer Science
(FOCS), pp. 482–491 (2003)

4. Boyd, S.P., Ghosh, A., Prabhakar, B., Shah, D.: Gossip algorithms: design, analysis
and applications. In: Proceedings of the IEEE Conference on Computer Commu-
nications (INFOCOM), pp. 1653–1664 (2005)

http://archives.ece.iastate.edu/archive/00000415/01/gossip.pdf

130 B. Lahiri and S. Tirthapura

5. Boyd, S.P., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms.
IEEE Transactions on Information Theory 52(6), 2508–2530 (2006)

6. Mosk-Aoyama, D., Shah, D.: Computing separable functions via gossip. In: Pro-
ceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed
Computing (PODC), pp. 113–122 (2006)

7. Misra, J., Gries, D.: Finding repeated elements. Science of Computer Program-
ming 2(2), 143–152 (1982)

8. Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In:
Proceedings of 28th International Conference on Very Large Data Bases (VLDB),
pp. 346–357 (2002)

9. Karp, R.M., Shenker, S., Papadimitriou, C.H.: A simple algorithm for finding fre-
quent elements in streams and bags. ACM Trans. Database Syst. 28, 51–55 (2003)

10. Cao, P., Wang, Z.: Efficient top-k query calculation in distributed networks. In:
Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC), pp. 206–215 (2004)

11. Zhao, Q., Ogihara, M., Wang, H., Xu, J.: Finding global icebergs over distributed
data sets. In: Proceedings of the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS), pp. 298–307 (2006)

12. Manjhi, A., Shkapenyuk, V., Dhamdhere, K., Olston, C.: Finding (recently) fre-
quent items in distributed data streams. In: Proceedings of the 21st International
Conference on Data Engineering (ICDE), pp. 767–778 (2005)

13. Keralapura, R., Cormode, G., Ramamirtham, J.: Communication-efficient dis-
tributed monitoring of thresholded counts. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD), pp. 289–300 (2006)

14. Gkantsidis, C., Mihail, M., Saberi, A.: Random walks in peer-to-peer networks. In:
Proceedings of the 23rd Conference of the IEEE Communications Society (INFO-
COM) (2004)

15. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

16. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent
permutations (extended abstract). In: Proceedings of the ACM Symposium on
Theory of Computing (STOC), pp. 327–336 (1998)

Maintaining Consistent Transactional States

without a Global Clock

Hillel Avni1,3 and Nir Shavit1,2

1 Tel-Aviv University, Tel-Aviv 69978, Israel
2 Sun Microsystems Laboratories, 1 Network Drive, Burlington MA 01803-0903
3 Freescale Semiconductor Israel Ltd., 1 Shenkar Street, Herzliya 46725, Israel

hillel.avni@gmail.com

Abstract. A crucial property required from software transactional
memory systems (STMs) is that transactions, even ones that will even-
tually abort, will operate on consistent states. The only known tech-
nique for providing this property is through the introduction of a globally
shared version clock whose values are used to tag memory locations. Un-
fortunately, the need for a shared clock moves STM designs from being
completely decentralized back to using centralized global information.

This paper presents TLC, the first thread-local clock mechanism for
allowing transactions to operate on consistent states. TLC is the proof
that one can devise coherent-state STM systems without a global clock.

A set of early benchmarks presented here within the context of the
TL2 STM algorithm, shows that TLC’s thread-local clocks perform as
well as a global clock on small scale machines. Of course, the big promise
of the TLC approach is in providing a decentralized solution for future
large scale machines, ones with hundreds of cores. On such machines, a
globally coherent clock based solution is most likely infeasible, and TLC
promises a way for transactions to operate consistently in a distributed
fashion.

1 Introduction

The question of the inherent need for global versus local information has been
central to distributed computing, and will become central to parallel computing
as multicore machines, now in the less than 50 core range, move beyond bus
based architectures and into the 1000 core range. This question has recently
arisen in the context of designing state-of-the-art software transactional memo-
ries (STMs).

Until recently, STM algorithms [1,2,3,4,5] allowed the execution of “zombie”
transactions: transactions that have observed an inconsistent read-set but have
yet to abort. The reliance on an accumulated read-set that is not a valid snap-
shot [6] of the shared memory locations accessed can cause unexpected behavior
such as infinite loops, illegal memory accesses, and other run-time misbehavior.
Overcoming zombie behavior requires specialized compiler and runtime support,
and even then cannot fully guarantee transactional termination [7].

A. Shvartsman and P. Felber (Eds.): SIROCCO 2008, LNCS 5058, pp. 131–140, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

132 H. Avni and N. Shavit

In response, Reigel, Felber, and Fetzer [8] and Dice, Shalev, and Shavit [7] in-
troduced a global clock mechanism as a means of guaranteeing that transactions
operate on consistent states. Transactions in past STM systems [1,2,3,4,5] typi-
cally updated a tag in the lock-word or object-record associated with a memory
location as a means of providing transactional validation. In the new global clock
based STMs [7,9,10] instead of having transactions locally increment the tags
of memory locations, they update them with a time stamp from the globally
coherent clock. Transactions provide consistency (recently given the name opac-
ity [11]) by comparing the tags of memory locations being read to a value read
from the global clock at the transaction’s start, guaranteeing that the collected
read-set remains coherent.

Unfortunately, this globally shared clock requires frequent remote accesses and
introduces invalidation traffic, which causes a loss of performance even on small
scale machines [7]. This problem will most likely make global clocks infeasible
on large scale machines with hundreds of cores, machines that no longer seem
fictional [12,13].

To overcome this problem, there have been suggestions of distributing the
global clock (breaking the clock up into a collection of shared clocks) [14,15],
or of providing globally coherent clock support in hardware [16]. The prob-
lem with schemes that aim to distribute the global clock is that the cost of
reading a distributed clock grows with the extent to which it is distributed.
The problem with globally coherent hardware clocks, even of such hardware
modifications were to be introduced, is that they seem to be limited to small
scale machines.

This paper presents TLC, the first thread-local clock mechanism that allows
transactions to operate on consistent states. The breakthrough TLC offers is
in showing that one can support coherent states without the need for a global
notion of time. Rather, one can operate on coherent states by validating mem-
ory locations on a per thread basis. TLC is a painfully simple mechanism that
has the same access patterns as prior STMs that operate on inconsistent states
[1,3,2,4,5]: the only shared locations to be read and written are the tags associ-
ated with memory locations accessed by a transaction. This makes TLC a highly
distributed scheme by its very nature.

1.1 TLC in a Nutshell

Here is how TLC works in a nutshell. As usual, a tag containing a time-stamp
(and other information such as a lock bit or HyTM coordination bit) is associated
with each transactional memory location. In TLC, the time-stamp is appended
with the ID of the thread that wrote it. In addition, each thread has a thread
local clock which is initially 0, and is incremented by 1 at the start of every
new transaction. There is also a thread local array of entries, each recording a
time-stamp for each other thread in the system. We stress that this array is local
to each thread and will never be read by others.

Without getting into the details of a particular STM algorithm, we remind the
reader that transactions in coherent-state STMs [7,10,9] typically read a location

Maintaining Consistent Transactional States without a Global Clock 133

by first checking its associated tag. If the tag passes a check, the location is
consistent with locations read earlier and the transaction continues. If it is not,
the transaction is aborted. Transactions write a memory location by updating
its associated tag upon commit.

Here is how TLC’s check and update operations would be used in a transaction
by a given thread i:

1. Update(location) Write to the locations tag my current transaction’s new
local clock value together with my ID i.

2. Check(location) Read the location’s tag, and extract the ID of the thread j
that wrote it. If the location’s time-stamp is higher than the current time-
stamp stored in my local array for the thread j, update entry j and abort
my current transaction. If it is less than or equal to the stored value for j,
the state is consistent and the current transaction can continue.

This set of operations fits easily into the global-clock-based schemes in many of
today’s STM frameworks, among them McRT [10], TinySTM [17], or TL2 [7],
as well as hardware supported schemes such as HyTM [1] and SigTM [9].

How does the TLC algorithm guarantee that a transaction operates on a con-
sistent read-set? We argue that a TLC transaction will always fail if it attempts
to read a location that was written by some other transaction after it started.
For any transaction by thread i, if a location is modified by some thread j af-
ter the start of i’s transaction, the first time the transaction reads the location
written by j, it must find the associated time-stamp larger than its last recorded
time-stamp for j, causing it to abort.

An interesting property of the TLC scheme is that it provides natural local-
ity. On a large machine, especially NUMA machines, transactions that access a
particular region of the machine’s memory will only ever affect time-stamps of
transactions accessing the same region. In other words, the interconnect traffic
generated by any transaction is limited to the region it accessed and goes no fur-
ther. This compares favorably to global clock schemes where each clock update
must be machine-wide.

The advantages of TLC come at a price: it introduces more false-aborts than
a global clock scheme. This is because a transaction by a thread j may complete
a write of some location completely before a given transaction by i reads it, yet
i’s transaction may fail because its array recorded only a much older time-stamp
for j.

As our initial benchmarks show, on small scale state of the art multicore
machines, the benefits of TLC are overshadowed by its higher abort rate. We
did not have a 1000 node NUMA machine to test TLC on, and so we show that
on an older generation 144 node NUMA machine, in benchmarks with a high
level of locality, TLC can significantly outperform a global clock. Though this is
by no way an indication that one should use TLC today, it is an indicator of its
potential on future architectures, where a global clock will most likely be costly
or even impossible to implement.

134 H. Avni and N. Shavit

2 An STM Using TLC

We now describe an STM implementation that operates on consistent states
without the need for a global clock by using the TLC algorithm. Our choice
STM is the TL2 algorithm of Dice, Shalev, and Shavit [7], though TLC could
fit in other STM frameworks such as McRT [10], or TinySTM [17] as well as
hardware supported schemes such as HyTM [1] and SigTM [9]. We will call this
algorithm TL2C.

Recall that with every transacted memory location TL2 associates a special
versioned write-lock. The time-stamp used in the TL2C algorithm will reside
in this lock. The structure of the TL2C algorithm is surprisingly simple. Each
time-stamp written will be tagged with the ID of the thread that wrote it. Each
thread has:

– a thread local TLClock, initially 0, which is incremented by 1 at the start of
every new transaction, and

– a thread local CArray of entries, each entry of which records a time-stamp
for each other thread in the system.

The clock has no shared components.
In the TL2C algorithm, as in the original TL2, the write-lock is updated by ev-

ery successful lock-release, and it is at this point that the associated time-stamp
is updated. The algorithm maintains thread local read-and write-sets as linked
lists. The read-set entries contain the address of the lock. The write-set entries
contain the address of the memory location accessed, the value to be written, and
the address of the associated lock. The write-set is kept in chronological order
to avoid write-after-write hazards. During transactional writing operations the
read-set is checked for coherency, then write set is locked, and then the read-set
is rechecked. Obviously aborts that happen before locking are preferable.

We now describe how TL2C, executes in commit mode a sequential code frag-
ment that was placed within a transaction. The following sequence of operations
is performed by a writing transaction, one that performs writes to the shared
memory. We will assume that a transaction is a writing transaction. If it is a
read-only transaction this can be annotated by the programmer, determined at
compile time, or heuristically inferred at runtime.

1. Run through a speculative execution in a TL2 manner collecting read and
write sets. A load instruction sampling the associated lock is inserted before
each original load, which is then followed by post-validation code which is
different than in the original TL2 algorithm. If the lock is free, a TL2C check
operation is performed. It reads the location’s time-stamp from the lock, and
extracts the ID of the thread j that wrote it. If the location’s time-stamp is
higher than the current time-stamp stored in its CArray for the thread j,
it updates entry j and aborts the transaction. If it is less than or equal to
the stored value for j, the state is consistent and the speculative execution
continues.

Maintaining Consistent Transactional States without a Global Clock 135

2. Lock the write set: Acquire the locks in any convenient order using bounded
spinning to avoid indefinite deadlock. In case not all of these locks are suc-
cessfully acquired, the transaction fails.

3. Re-validate the read-set. For each location in the read-set, first check it was
not locked by another other thread. It might have been locked by the local
thread if it is a part of both the read and write sets. Then complete the
TL2C check for the location, making sure that its time stamp is less than
the associated thread j’s entry in the CArray. In case the check fails, the jth
entry of the CArray transaction is aborted. By re-validating the read-set, we
guarantee that its memory locations have not been modified while steps 1,2
and 3 were being executed.

4. Increment the local TLClock.
5. Commit and release the locks. For each location in the write-set, store to the

location the new value from the write-set and update the time-stamp in the
location’s lock to the value of the TLClock before releasing it. This is done
using a simple store.

Note that the updating of the time-stamps in the write-locks requires only a
simple store operation. Also, notice that the local TLClock is only updated once
it has been determined that the transaction will successfully commit.

The key idea of the above algorithm is the maintaining of a consistent read-set
by maintaining a local view of each thread’s latest time-stamp, and aborting the
transaction every time a new time-stamp value is detected for a given thread.
This prevents any concurrent modifications of the locations in the read set since a
thread’s past time-stamp was determined in an older transaction, so if the change
occurs within the new transaction the new time stamp will be detected as new.
This allows detection to proceed on a completely local basis. It does however
introduce false aborts, aborts by threads that completed their transaction long
before the current one, but will cause it to fail since the time-stamp recorded for
them in the CArray was not current enough.

We view the above TL2C as a proof of concept, and are currently testing var-
ious schemes to improve its performance even on today’s machines by reducing
its abort rate.

3 Proof of the TL2C Algorithm

We outline the correctness argument for the TLC algorithm in the context of the
TL2C algorithm. Since the TLC scheme is by construction wait-free, we only to
argue safety. The proof of safety amounts to a simple argument that transactions
always operate on a consistent state.

We will assume correctness of the basic underlaying TL2 algorithm as proven
in [7]. In our proof argument, we refer to the TL2C algorithm’s steps as they
were defined in Section 2. Given the assumption that TL2 operates correctly, we
need only prove that in both steps (1) and (3) in which the algorithm collects a
read-set using TLC, this set forms a coherent snapshot of the memory, one that
can be linearized at the start (first read) of the given collection phase.

136 H. Avni and N. Shavit

We recall that every TL2 transaction that writes to at least one variable, can
be serialized at the point in which it acquired all the locks on the locations it is
about to write. Consider any collection phase (of read and write sets), including
reads and writes by memory by a transaction of thread i in either step (1) or (3).
For every location read by i, let the transaction that wrote to it last before it was
read by i be one performed by a thread j. If j’s transaction was not serialized
before the start of the current collection, then we claim the collection will fail
and the transaction by i will be aborted. The reason for this is simple. The last
value stored in the CArray of i for j was read in a prior transaction of i, one
that must have completed before i started the current transaction. Thus, since
j increments its TLClock before starting its new transaction, if j’s transaction
was not linearized before i, then the value it wrote was at least one greater than
the one recorded for j in the CArray of i. Thus i will detect an inconsistent view
and abort its current transaction.

4 Empirical Performance Evaluation

The type of large scale NUMA multicore machine on which we believe one will
benefit from the TLC approach is still several years ahead. We will therefore
present two sets of benchmarks to allow the reader to gauge the limitations of
the TLC approach on today’s architectures and its potential benefits on future
ones.

– The first benchmark is a performance comparison of the TL2C algorithm
to the original TL2 algorithm with a version GV5 global clock (see [7] for
details, the key idea of GV5 is to avoid frequent increments of the shared
clock by limiting these accesses to aborted transactions.) on a 32-way Sun
UltraSPARC T1TM machine. This is a present day single chip multi-core
machine based on the Niagara architecture that has 8 cores, each supporting
4 multiplexed hardware threads.

Our benchmark is the standard concurrent red-black tree algorithm, writ-
ten by Dave Dice, taken from the official TL2 release. It was in turn derived
from the java.util.TreeMap implementation found in the Java 6.0 JDK.
That implementation was written by Doug Lea and Josh Bloch. In turn,
parts of the Java TreeMap were derived from the Cormen et al [18].

– The second benchmark is a performance comparison of the TL2C algorithm
to the TL2 algorithm on a Sun E25KTM system, an older generation NUMA
multiprocessor machine with 144 nodes arranged in clusters of 2, each of
which sits within a cluster of 4 (so there are 8 cores per cluster, and 18
clusters in the machine), all of which are connected via a large and relatively
slow switch.

Our benchmark is a synthetic work-distribution benchmark in the style of
Shavit and Touitou [19]. The benchmark picks random locations to modify,
in our case 4 per transaction, and has overwhelming fraction of operations
within the cluster and a minute fraction outside it. This is intended to mimic

Maintaining Consistent Transactional States without a Global Clock 137

RB small tree - 30% DEL/30% INS - Niagara I

TL2/OPS

TL2/ABO

TLC/OPS

TLC/ABO

0

500

1000

1500

2000

2500

3000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Threads

10
00

 X
 (

o
p

s:
ab

o
rt

s)
/s

ec

RB large tree - 30% DEL/30% INS - Niagara I

TL2/OPS

TL2/ABO

TLC/OPS

TLC/ABO

0

500

1000

1500

2000

2500

3000

3500

4000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Threads

10
00

 X
 (

o
p

s:
ab

o
rt

s)
/s

ec

Fig. 1. Throughput of TL2 and TL2C on a Red-Black Tree with 30% puts, 30% deletes.
The figure shows the throughput and the abort rate of each algorithm.

the behavior of future NUMA multicore algorithms that will make use of
locality but will nevertheless have some small fraction of global coordination.

The graph of an execution of small (1000 nodes) and large red-black trees (1
million nodes) appears in Figure 1. The operation distribution was 30% puts,
30% deletes, and 40% gets. To show that the dominant performance factor in
terms of TLC is the abort rate, we plot it on the same graph.

As can be seen, in both cases the smaller overhead of the TLC mechanism in
the TL2C algorithm is shadowed by the increased abort rate. On the smaller tree
the algorithms perform about the same, yet on the larger one the price of the

138 H. Avni and N. Shavit

DB 4 locations- Clusters 8 - E25K

TL2

TLC

0

5000

10000

15000

20000

25000

1 10 19 28 37 46 55 64 73 82 91 100

Threads

10
00

 X
 o

p
s/

se
c

Fig. 2. Throughput of TL2 and TL2C on the work distribution benchmark in which
most of the work is local within a cluster of 8 nodes

aborts is larger because the transactions are longer, and so TL2C performs more
poorly than the original TL2 with a global clock. This result is not surprising as
the overhead of the GV5 clock mechanism is very minimal given the fast uniform
memory access rates of the Niagara I architecture.

The graph in Figure 2 shows the performance of the artificial work-distribution
benchmark where each thread picks a random subset of memory locations out
of 2000 to read and write during a transaction, mimicking a pattern of access
that has high locality by having an overwhelming fraction of operations happen
within a cluster of 8 nodes and a minute fraction outside it. As can be seen, the
TL2C algorithm has about twice the throughput of TL2, despite having a high
abort rate (not shown) as in the Niagara I benchmarks. The reason is that the
cost of accessing the global clock, even if it is reduced by in relatively infrequent
accesses in TL2’s GV5 clock scheme, still dominates performance. We expect the
phenomena which we created in this benchmark to become prevalent as machine
size increases. Algorithms, even if they are distributed across a machine, will
have higher locality, and the price of accessing the global clock will become a
dominant performance bottleneck.

5 Conclusion

We presented a novel decentralized local clock based implementation of the
coherence scheme used in the TL2 STM. The scheme is simple, and can greatly
reduce the overheads of accessing a shared location. It did however significantly
increase the abort rate in the microbenhmarks we tested. Variations of the algo-
rithm that we tried, for example, having threads give other threads hints, proved

Maintaining Consistent Transactional States without a Global Clock 139

too expensive given the simplicity of the basic TLC mechanism: they reduced
the abort rate but increased the overhead. The hope is that in the future, on
larger distributed machines, the cost of the higher abort rate will be offset by
the reduction in the cost that would have been incurred by using a shared global
clock.

References

1. Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., Nussbaum, D.: Hy-
brid transactional memory. In: ASPLOS-XII: Proceedings of the 12th international
conference on Architectural support for programming languages and operating sys-
tems, pp. 336–346. ACM, New York (2006)

2. Dice, D., Shavit, N.: What really makes transactions fast? In: TRANSACT ACM
Workshop (to appear, 2006)

3. Ennals, R.: Software transactional memory should not be obstruction-free (2005),
http://www.cambridge.intel-research.net/∼rennals/notlockfree.pdf

4. Harris, T., Fraser, K.: Language support for lightweight transactions. SIGPLAN
Not. 38(11), 388–402 (2003)

5. Saha, B., Adl-Tabatabai, A.R., Hudson, R.L., Minh, C.C., Hertzberg, B.: Mcrt-
stm: a high performance software transactional memory system for a multi-core
runtime. In: PPoPP 2006. Proceedings of the eleventh ACM SIGPLAN symposium
on Principles and practice of parallel programming, pp. 187–197. ACM, New York
(2006)

6. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. J. ACM 40(4), 873–890 (1993)

7. Dice, D., Shalev, O., Shavit, N.: Transactional locking ii. In: Dolev, S. (ed.) DISC
2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

8. Riegel, T., Fetzer, C., Felber, P.: Snapshot Isolation for Software Transactional
Memory. In: Proceedings of the First ACM SIGPLAN Workshop on Languages,
Compilers, and Hardware Support for Transactional Computing (2006)

9. Minh, C.C., Trautmann, M., Chung, J., McDonald, A., Bronson, N., Casper, J.,
Kozyrakis, C., Olukotun, K.: An effective hybrid transactional memory system
with strong isolation guarantees. In: ISCA 2007. Proceedings of the 34th annual
international symposium on Computer architecture, pp. 69–80. ACM, New York
(2007)

10. Wang, C., Chen, W.-Y., Wu, Y., Saha, B., Adl-Tabatabai, A.-R.: Code generation
and optimization for transactional memory constructs in an unmanaged language.
In: CGO 2007. Proceedings of the International Symposium on Code Generation
and Optimization, Washington, DC, USA, pp. 34–48. IEEE Computer Society, Los
Alamitos (2007)

11. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory (2007)
12. Sun Microsystems, Advanced Micro Devices: Tokyo institute of technology (tokyo

tech) suprecomputer (2005)
13. Systems, A.: Azul 7240 and 7280 systems (2007)
14. Dice, D., Moir, M., Lev, Y.: Personal communication (2007)
15. Felber, P.: Personal communication (2007)

http://www.cambridge.intel-research.net/~rennals/notlockfree.pdf

140 H. Avni and N. Shavit

16. Riegel, T., Fetzer, C., Felber, P.: Time-based transactional memory with scalable
time bases. In: 19th ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA) (2007)

17. Felber, P., Fetzer, C., Riegel, T.: Dynamic Performance Tuning of Word-Based
Software Transactional Memory. In: Proceedings of the 13th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP) (2008)

18. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press, Cambridge (1990); COR th 01:1 1.Ex

19. Shavit, N., Touitou, D.: Software transactional memory. Distributed Comput-
ing 10(2), 99–116 (1997)

Equal-Area Locus-Based Convex Polygon

Decomposition

David Adjiashvili and David Peleg�

Department of Computer Science and Applied Mathematics,
The Weizmann Institute of Science, Rehovot, Israel 76100

david.peleg@weizmann.ac.il

Abstract. This paper presents an algorithm for convex polygon de-
composition around a given set of locations. Given an n-vertex convex
polygon P and a set X of k points positioned arbitrarily inside P , the
task is to divide P into k equal area convex parts, each containing ex-
actly one point of X. The problem is motivated by a terrain covering
task for a swarm of autonomous mobile robots. The algorithm runs in
time O(kn + k2 log k).

1 Introduction

Motivation. Consider a swarm X of k mobile autonomous robots (cf. [3,5,13,19])
assigned the task of exploring an unknown region (cf. [15]), represented as a con-
vex polygon P . Designing an algorithm for performing this task calls for devel-
oping ways of dividing the task among the robots, by partitioning the region into
subregions and assigning each robot to a subregion. The problem of subdividing
a given polygon in the plane has been studied extensively, and several variants of
it have been examined. In our context, it may be convenient for load-balancing
purposes that the resulting subregions be of equal size. Moreover, for efficiency
purposes, it may be convenient that the resulting subregions be convex. How
can such a subdivision be achieved?

This problem is straightforward if the parts are allowed to differ in size. Even
the problem of partitioning P into k equal area parts around the points of X
is easy if the parts are allowed to be non-convex. The task becomes harder,
however, if it is required also that the parts be convex.

This leads to the following geometric problem. The input is a k-configuration
〈P, X〉 consisting of a convex polygon P with n vertices and a set of k points
X = {x1, ..., xk} in P . Let S be the area of the polygon P , and let σ = S/k.
The task is to find a subdivision of 〈P, X〉 into k equal-area 1-configurations
〈Pi, {xi}〉, referred to also as atomic configurations, namely, k equal-area convex
subregions {P1, ..., Pk} around the k points. Formally, for each i = 1, ..., k, the
area of Pi is exactly σ, xi ∈ Pi, and Pi is convex.

� Supported in part by a grant from the Israel Science Foundation.

A. Shvartsman and P. Felber (Eds.): SIROCCO 2008, LNCS 5058, pp. 141–155, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

142 D. Adjiashvili and D. Peleg

We call this kind of subdivision, depicted in the figure,
a locus-based convex subdivision of 〈P, X〉.

In general, the requirement that the parts be convex
cannot be achieved in case P is a concave polygon. This
is clearly evident for k = 1, though examples can be
constructed for any k ≥ 1, of a polygon that cannot be
divided into k or fewer convex subregions.

In fact, a-priori it is not clear that a locus-based convex subdivision exists for
every k-configuration 〈P, X〉 even when P is convex. In particular, its existence
can be derived from the ham sandwich theorem [11,18] for k values that are
powers of 2 (i.e., k = 2s for integral s) by recursive ham sandwich cuts, but not
for other k values. Moreover, a closely related area concerns equitable subdivisions
of the plane. The main existential result proved here (albeit not its algorithmic
aspects) can also be derived from the Equitable Subdivision Theorem [9,17], which
states that for integers r ≥ 1, b ≥ 1 and k ≥ 2, if the set R contains rk red
points and the set B contains bk blue points, then there exists a subdivision
X1 ∪X2 . . .∪Xk of the plane into k disjoint convex polygons such that every Xi

contains exactly r red points and b blue points. Thus our main contribution is
in presenting a polynomial time algorithm for the problem.

Our results. In this paper we prove that any configuration 〈P, X〉 enjoys a locus-
based convex subdivision; more importantly, we present a O(kn + k2 log k) time
algorithm for computing such a subdivision.

We do not concentrate our discussion on specific families of configurations,
although it is evident that the subdivision can be found more efficiently in certain
simple point configurations. In particular, one can obtain a convex subdivision
more efficiently if all points lie on a single line.

The solution we provide is recursive, namely, in each stage a large polygon is
divided into a number of smaller convex parts, which are balanced, in the sense
that the ratio between the number of points and the area in each part is the
same. Each part is further divided recursively. More formally, a μ-split of the k-
configuration 〈P, X〉 for X = {x1, ..., xk} and integer μ is a subdivision of 〈P, X〉
into μ ≥ 2 smaller configurations 〈Pj , Xj〉 for j = 1, .., μ, namely, a subdivision
of P into μ convex subregions P1, .., Pμ and a corresponding partition of X into
X1, .., Xμ of cardinalities k1, ..., kμ respectively, such that for every 1 ≤ j ≤ μ,

1. the area of Pj is kj · σ, and
2. the points of Xj are in Pj .

Our algorithm is based on recursively constructing a μ-split, for μ ≥ 2, for each
obtained configuration, until reaching 1-configurations. The method consists of
two main parts. The first component tries to achieve a 2-split, i.e., a division
of P into two convex balanced regions. If this fails, then the second component
applies a technique for achieving a 3-split or a 4-split, i.e., dividing P into three
or four convex balanced regions simultaneously.

We remark that our algorithm can be extended to handle the 3-dimensional
version of the problem as well. The resulting algorithm and its analysis are

Equal-Area Locus-Based Convex Polygon Decomposition 143

deferred to the full paper. Another extention of our algorithm which is not
described here is a decomposition for a general continuous distribution over P .

The following section is devoted to basic definitions, facts and techniques uti-
lized by the algorithm. This section also describes the first component of the
algorithm, which attempts to compute a 2-split. Section 3 deals with configura-
tions that do not admit a 2-split by the first component of our algorithm. In this
case, the solution proposed computes a μ-split for μ ≤ 4. Section 4 summarizes
the algorithm and provides a complexity analysis.

Related work. Very recently, we learned that a result similar to ours was obtained
independently (and at about the same time) in [12], using similar methods and
with a bound of O(k(k + n) log(k + n)) on the time complexity. A number of
related problems were studied in the field of computational geometry. In par-
ticular, algorithms for polygon decomposition under different constraints were
developed (cf. [14]). The problem of decomposing a simple polygon into k equal-
area subregions with the constraint that each subregion has to contain one of
k distinguished points on its boundary was studied in [16]. Here, we solve a
similar problem in a convex polygon, with the additional constraint that every
subregion has to be convex as well. Another algorithm for a different polygon
decomposition problem, where a simple polygon with k sites on its boundary
has to be decomposed into k equal-area subregions, each containing a single site
on its boundary, is presented in [7]. An approximation algorithm for supplying
a polygonal demand region by a set of stationary facilities in a load-balanced
way is presented in [4]. The cost function discussed is based on the distances be-
tween the facilities and their designated regions. Problems related to equitable
subdivisions have also been studied in [1,2,6,8,10].

2 Preliminaries

2.1 Basic Definitions

Let us start with common notation and some definitions to be used later on. For
a point x0 inside P and another point x1, denote the directed ray originating
at x0 and passing through x1 by −−−→x0, x1. We use directed rays instead of lines in
order to clearly distinguish one side as the left side of the line (namely, the side
to our left when standing at x0 and facing x1) and the other as the right side.

Let x be a point inside P and y1, y2 be two
points on the boundary of P . Let ρ1 = −−→x, y1
and ρ2 = −−→x, y2. The slice defined by ρ1 and ρ2,
denoted by Slice(ρ1, ρ2), is the portion of P en-
closed between ρ1, ρ2 and the boundary of P ,
counterclockwise to ρ1.

Let P ′ be a subregion of P and ρ = −→x, y be a ray inside P . We use the following
notation.

144 D. Adjiashvili and D. Peleg

– Area(P ′) denotes the area inside P ′.
– Points(P ′) denotes the number of points inside P ′ including on the boundary.
– Points(P ′) denotes the number of points strictly inside P ′.
– Points(ρ) denotes the number of points on ρ (between x and y).
– Excess(P ′) = Area(P ′) − σ · Points(P ′).
– Excess(P ′) = Area(P ′) − σ · Points(P ′).

We say the region P ′ is balanced if Excess(P ′) = 0, dense if Excess(P ′) < 0
and sparse if Excess(P ′) > 0.

2.2 Dividing Lines

This subsection explains the notion of a dividing line and establishes a couple of
its properties.

The following lemma and corollary establish the fact that a 2-configuration
can always be 2-split using a single separating straight line. This provides the
base of our inductive proof for the existence of a locus-based convex subdivision
for any k-configuration.

Lemma 1. For a given polygon P and X = {x1, x2}, there exists a straight line
� that divides P into two equal-area subregions, with one point in each subregion.

Proof. Let s = x1, x2 be the line segment that connects the two points, and let
p be a point on it. Let �̄ be the horizontal line that goes through p. Define the
function f : [0, π] → IR as

f(θ) = area of P under �̄ after rotating P by an angle of θ around p.

Clearly, f is a continuous function. Furthermore, f(π) = S − f(0). If f(0) = S/2
then we are done with � = �̄. Now assume without loss of generality that f(0) <
S/2. This means that f(π) > S/2. Since f is continuous, by the Mean Value
theorem, there exists an angle θ̂ ∈ [0, π] such that f(θ̂) = S/2. Due to the choice
of p, we are guaranteed that the points x1 and x2 are not on the same side of
the appropriate line. (See Figure 1).

Corollary 1. Every 2-configuration has a locus-based convex subdivision.

Fig. 1. Rotating P by θ degrees, in proof of Lemma 1

Equal-Area Locus-Based Convex Polygon Decomposition 145

We proceed with the following basic definition.

Definition 1. A line l that intersects P is
called a dividing line if it does not go through
any point of X, and the two resulting parts of P
are both balanced.

A dividing line clearly yields a 2-split of the configuration. Therefore, finding a
dividing line is a natural approach for establishing a recursive solution to the
problem. Our algorithm always attempts first to find a dividing line that will
satisfy the inductive step. Unfortunately, the existence of a dividing line is not
always guaranteed, as illustrated by the following example.

Example: Consider a 3-configuration 〈P, X〉 where P is a square of area S
and the three points X = {x1, x2, x3} are positioned densely around the center
of the square. A dividing line should thus separate one point from the other two,
so the areas of the respective parts should be σ and 2σ for σ = S/3.
The location of the points dictates, how-
ever, that any dividing line will necessarily
pass close to the square center. The area
on both sides of the dividing line can be
made arbitrarily close to 1.5σ = S/2 by
positioning the points arbitrarily close to
the center.

It follows that a dividing line does not exist in this case (Figure (a)). Hence
such configurations require a different approach, such as dividing the polygon
into convex subregions as in Figure (b).

2.3 Vertical Scans and Hull Scans

As established in this subsection, certain configurations 〈P, X〉 are actually guar-
anteed to have a dividing line. We consider a vertical scan procedure. Intuitively,
a scan of a planar region is the process of sweeping a straight line over the region
in a continuous fashion, scanning the region as it progresses. Formally, one can
define a scan of a planar region as a pair 〈L, S〉 such that L is a set of straight
lines in the plane and S : [a, b] → L is a continuous progress function, which
associates with each t ∈ [a, b] a unique line S(t) ∈ L. We also associate with
each t some measured quantity ϕ(t), given by the scan function ϕ : [a, b] → IR.
In practice, scans are implemented as discrete processes, sampling only a spe-
cific predefined finite set of event points corresponding to line positions along
the sweep process.

In this section we define two types of scans of the k-configuration 〈P, X〉,
namely, the vertical scan and the hull scan. See Figure 2. A polar scan around a
fixed point x is defined in the next section.

Vertical Scan: Let L be the set of vertical lines (lines of the form x = x̂),
and let Left(x̂) (respectively, Right(x̂)) denote the region inside P to the left
(respectively, right) of the vertical line x = x̂. Let x̂l and x̂r be the x-coordinates

146 D. Adjiashvili and D. Peleg

Fig. 2. (a) Vertical scan. (b) Polar scan around x. (c) Hull scan around x1 and x2.

of the leftmost and the rightmost points inside P , respectively. During the scan,
for any coordinate t in the range [x̂l, x̂r], the scan function ϕ returns the value
ϕ(t) = Excess(Left(t)).

Lemma 2. Let X = {x1, ..., xk} be ordered by increasing x-coordinates, and
assume a dividing line does not exist for 〈P, X〉. Then one of the following must
be true:
1. Area(Left(x1)) > σ.
2. Area(Right(xk)) > σ.

Proof. Let x̄1, ..., x̄k be the x-coordinates of x1, ..., xk, respectively. Assume, to-
ward contradiction, that both statements are false, i.e., Area(Left(x1)) < σ and
Area(Right(xk)) < σ (as clearly, equality yields a dividing line). We claim that
in this case there exists some x̄ ∈ [x̄1, x̄k] such that the vertical line x = x̄ is a
dividing line. To see this, note that ϕ is continuous and monotonically increasing
in every open interval (x̄i, ¯xi+1) for i = 1, .., k − 1. Furthermore, if statement 1
is false, then ϕ(x̄1 + ε) < 0 for sufficiently small ε, and if statement 2 is false
then ϕ(x̄k) > 0. Notice that the jumps in the function ϕ (which occur only at
coordinates x̄i) are always to a lower value. Therefore, there exists an index i
such that ϕ(x̄i) < 0 and ϕ(¯xi+1) > 0. Therefore, by the Mean Value theorem,
there exists some x̄ ∈ (x̄i, ¯xi+1) such that ϕ(x̄) = 0, implying that x = x̄ is a
dividing line; a contradiction.

Corollary 2. If Area(Left(x1)) ≤ σ and Area(Right(xk)) ≤ σ, then a dividing
line (and hence a 2-split) exists for the configuration 〈P, X〉.
Denote by x(l) the x-coordinate of the vertical line l. By the definition of a
dividing line, if the line l partitions P into two regions, Left(x(l)) and P \
Left(x(l)), then ϕ(l) = Excess(Left(x(l))) = 0 means that l is a dividing line.
Plotting the function ϕ as the line l moves from left to right, we observe that
it is composed of continuous monotonically increasing segments and jumps to
a lower value. The jumps occur whenever the scan line hits a point of X . A
dividing line l satisfies ϕ(l) = Excess(Left(x(l))) = 0 if l does not contain a

Equal-Area Locus-Based Convex Polygon Decomposition 147

point. A dividing line can also occur when l reaches a point. In this case either
Excess(Left(x(l))) = 0 or Excess(Left(x(l))) = 0 holds. This means that a
crossing of the zero value can either happen in the continuous part, creating a
dividing line, or on a point where ϕ jumps from a positive value to a negative
one, which means the scan did not cross a dividing line. If on jump the ϕ jumps
to ϕ(l) = −1, then l is a dividing line as well. We elaborate on handling the
latter case in Subsection 2.4.

This result can actually be generalized to any continuous scanning procedure
of the (not necessarily convex) region. (The next section describes a polar scan
of the polygon P .)

We next describe a different kind of scanning procedure, that involves the
convex hull of the set of points inside P .

A tangent to a convex region C is a straight line that intersects C in exactly
one point. An edge line of a convex C is a line that contains an edge of C.

Let CH(X) denote the convex hull of the set X =
{x1, ...xk}. Assume without loss of generality that
x1, .., xs are the points on CH(X) in clockwise order,
and let l be a tangent to CH(X) that intersects it at
x1. The polygon P is divided by l into two regions, one
of which contains the entire CH(X). Let Out(l) be the
other region.

We consider the following scanning procedure.

Hull Scan: Start rotating l around x1 in the counterclockwise direction until it
reaches x2. Now continue rotating the line around x2 until it reaches x3, and so
on. The scan ends when it completes a wrap around the convex hull (i.e., once it
reaches the original tangent l). We refer to the (infinitely many) lines obtained
along this process as the scan lines of X , and denote the set of scan lines by
SL(X). Note that SL(X) consists of precisely the tangents and edge lines of
CH(X).

For convenience, we assume that initially the configuration is rotated so that
the original tangent l is aligned with the x-axis, and every other line reached
during the process is represented by the angle it forms with l. Due to the cyclic
nature of the process and the fact that we end up with l, the entire process can
be represented by the progress function S : [0, 2π] → SL(X), with

S(θ) = the scan line that forms an angle of θ with l

and taking the scan function to be

ϕ(θ) = Area(Out(S(θ))).

Note that S(θ) is a tangent to some point for every θ ∈ [0, π], except for the
passages from one point to the other, where S(θ) is an edge line. Furthermore,
Points(Out(S(θ))) = 0 for every θ ∈ [0, 2π].

Most importantly, the scanning procedure is again continuous, in the sense that
Area(Out(S(θ))) is a continuous function. This implies the following straightfor-
ward lemma.

148 D. Adjiashvili and D. Peleg

Lemma 3. If Area(Out(S(α1))) ≤ σ for some α1 ∈ [0, 2π] and Area(Out(S(α2)))
≥ σ for some α2 ∈ [0, 2π], then the configuration has a dividing line.

Proof. Assume without loss of generality that α1 ≤ α2. Since Area(Out(S(θ))) is
a continuous function, according to the Mean Value Theorem there exists some
β ∈ [α1, α2] such that Area(Out(S(β))) = σ. Since Points(Out(S(θ))) = 0 and
the line S(β) contains at least one point, we can assign Out(S(β)) to this point.
Both new regions are convex, since they were obtained by dividing a convex
region with a straight line. We conclude that S(β) is a dividing line.

Combining Corollary 2 and Lemma 3 leads to the fol-
lowing characterization.

A configuration 〈P, X〉 is called compact iff
Area(Out(l)) > σ for every tangent or edge line l
of CH(X).

Lemma 4. If 〈P, X〉 is a non-compact configuration then a dividing line (and
hence a 2-split) exists.

Proof. By assumption, there is a scan line l of CH(X) such that Area(Out(l)) ≤
σ. The proof is divided into two cases. First assume that there also exists a scan
line l̂ such that Area(Out(l̂)) ≥ σ. In this case, Lemma 3 guarantees that a hull
scan will find a dividing line. Now suppose that Area(Out(l̂)) ≤ σ for every scan
line l̂. In this case, a vertical scan starting from l is guaranteed to find a dividing
line, by Corollary 2.

The more complex case is, therefore, that of a compact configuration, where the
convex hull of the set of points is ‘too far’ from the boundary of the polygon P .
This is exactly the case of the example from Subsection 2.2, in which no dividing
line exists. In this case, a recursive solution should try to achieve a μ-split for
μ > 2, i.e., divide the problem into three or more smaller subproblems.

2.4 The Function ’Excess’ and Semi-dividing Lines

In this subsection we focus on the function Excess and its properties on com-
pact configurations. As shown in the previous subsection, one cannot always
expect to find a dividing line. Nevertheless, we would like to follow a vertical
scan procedure on P from left to right, as defined in Subsection 2.3. Since the
configuration is compact, ϕ will reach a value higher than σ before reaching x1,
the first point of X . In addition, just after passing the last point, xn, ϕ will reach
a value smaller than −σ.

This means that during the scan, ϕ must cross
zero somewhere in between. If the crossing occurs in
a continuous part of ϕ, then it yields a dividing line.
The problematic case is when the crossing occurs on
a ”jump”, namely, the crossing line l̂ goes through
some point xi ∈ X and satisfies 0 < ϕ(x̂(l)) =
Excess(Left(x̂(l))) < σ. Such lines, called semi-dividing
lines, will be useful in a later stage of the algorithm.

Equal-Area Locus-Based Convex Polygon Decomposition 149

Example: Let us return to our example from Subsection 2.2, consisting of
a square and three points positioned closely around the center of the square.
In this case, any line that passes between the points is a semi-dividing line.
Consider one such line. Let P1 be the side with one point, and P2 the side
with the other two points. Since all points are so close to the middle, we have
that Area(P1) ≈ Area(P2) ≈ 1.5σ. This means that Excess(P1) ≈ −0.5σ and
Excess(P2) ≈ 0.5σ. Therefore, this is a semi-dividing line.

Note that we may want to consider polar scan procedures (where the scan line
rotates around some point, instead of moving in some fixed direction) as well as
vertical scans. The same definitions apply to both kinds.

The following sections deal solely with compact configurations, and describe
a way to achieve a μ-split of the configuration for μ ≥ 2.

3 A Solution for Compact Configurations

3.1 Solution Strategy

In this section we describe an algorithmic way to handle the inductive step in
the case of a compact configuration. The first step is to choose a vertex x of
the convex hull CH(X). For concreteness, choose the one with the lowest y-
coordinate. Let El and Er be the two edges of CH(X) incident to x. Assume
without loss of generality that El is to the left of x and Er is to its right. The
straight lines containing El and Er intersect the boundary of P at four points,
p1, p2, p3, p4, in polar order on P .

Define three sectors around x:
LeftSlice = Slice(−−→x, p1, −−→x, p2),
MidSlice = Slice(−−→x, p2, −−→x, p3),
RightSlice = Slice(−−→x, p3, −−→x, p4).

The following fact is quite straightforward.

Fact 1. Points(LeftSlice) = Points(MidSlice) = Points(RightSlice) = 0.

Furthermore, since the configuration is compact, the following must hold.

Fact 2

(1) Area(LeftSlice) + Area(MidSlice) > σ,
(2) Area(MidSlice) + Area(RightSlice) > σ.

However, we cannot assume anything about the individual areas of LeftSlice,
MidSlice and RightSlice. The actual amount of area in each individual part affects
the way the polygon is divided and the inductive step is completed.

150 D. Adjiashvili and D. Peleg

We now classify the space of possible compact configurations into eight cases,
(s1, s2, s3), where s1 = ‘+’ if Area(LeftSlice) ≥ σ and s1 = ‘-’ otherwise, and simi-
larly for s2 and s3 with respect to MidSlice and RightSlice respectively. For exam-
ple, (+, +, −) represents the case where Area(LeftSlice) ≥ σ, Area(MidSlice) ≥ σ
and Area(RightSlice) < σ. Noticing the symmetry between LeftSlice and Right-
Slice, it follows that the case (+, +, −) is equivalent to (−, +, +), and (+, −, −) is
equivalent to (−, −, +). Therefore, we actually have only six different scenarios
to analyze. The major part of our analysis involves showing how a μ-split can be
obtained for these six cases. This is achieved in the following subsections, each
of which describes the construction of a μ-split for some subset of the six cases.
As a result we get the following.

Lemma 5. Every compact configuration has a μ-split for μ ≥ 2.

Combining Lemmas 4 and 5 yields our main theorem.

Theorem 3. Every configuration has a locus-based convex subdivision,
constructible in polynomial time.

3.2 Polar Scans

Before starting with the analysis of the different cases, we describe another
necessary tool, namely, the polar scan.

Clockwise Polar Scan around the point x: Let L be the collection of all
straight lines that intersect the point x. Fix l0 ∈ L and let lθ be the line obtained
by rotating l0 clockwise around x by θ degrees. The progress function S : [0, θe] →
IR of a polar scan is defined for some θe > 0 as

S(θ) = lθ.

In other words, the scan rotates the line l0 clockwise until it reaches the line lθe .
The counterclockwise polar scan around the point x is defined similarly, except

for the direction in which the line l0 is rotated.
Next we would like to consistently name one intersection of every scan line

with P as the ‘Top’ intersection. Let Top(l0) be the intersection of l0 with the
boundary of P that is of larger y-coordinate. If l0 is horizontal, then Top(l0) is
the intersection with the larger x-coordinate. For every other line lθ in the scan,
the definition of Top(lθ) preserves the continuity of the path p(θ) = Top(lθ). In
particular, when the scan line passes the horizontal line that contains x for the
first time, Top(lθ) becomes the intersection of lθ with P ’s boundary, that is of
lower y-coordinate.

We can now define Left(l) (respectively, Right(l)) for a scan line l in a polar
scan to be the part of P that is to the left (respectively, right) of l when standing
at x and facing Top(l). Let the scan function ϕ : [0, θe] → IR be defined as

ϕ(θ) = Excess(Left(lθ)).

Equal-Area Locus-Based Convex Polygon Decomposition 151

The following lemma guarantees that under conditions similar to those in
Corollary 2, a dividing line will be found in a polar scan around p in case p is a
vertex of the polygon P . In fact, the lemma holds even for non-convex polygons,
so long as they are completely visible from p (i.e., for every point q ∈ P , there is
a straight line connecting p and q, that is completely contained in P). This fact
will be useful in the analysis to follow.

Lemma 6. Let 〈S, L〉 be a clockwise polar scan around a vertex p of P , which
scans every point in P (every point is touched by some scan line). Let {x1, ..., xk}
be the order in which the points in X intersect the scan lines. Denote by lθ1 and
lθ2 the first scan lines that intersect x1 and xk, respectively. Assume that

1. Area(Left(lθ1)) < σ,
2. Area(Right(lθ2)) < σ.

Then a dividing line will be found in the scan.

We skip the proof of Lemma 6, since it is based on a repetition of the ideas in
the proof of Lemma 2.

For convenience we enumerate the points in X \ {x} in clockwise polar order
around x, starting with the point that sits on the edge El (exactly to the left
of x). Let x1, x2, .., xk−1 be the enumeration. If two points appear on the same
ray originating at x, then we order them according to their distance from x, the
closer one first. Hereafter, we denote prefixes of the set X in this polar order by

Xm = {x1, x2, ..., xm}.

According to this notation, Sl contains exactly the set of points Xt for some
t > 0.

3.3 Case Analysis

Solving cases (+, +, +) and (+, −, +): In both the (+, +, +) and (+, −, +) cases,
the left and right slices are larger than σ. This fact can be used to achieve a
3-split. Start by performing a polar scan procedure around x. The first scan line
is aligned with El and the procedure ends before reaching Er. Throughout the
procedure, x is not assigned to either part of P . The effect of this is that we have
an overall excess of σ in area. If the scan finds a dividing line, hence a 2-split,
then we are done by Subsection 2.4.

Otherwise, the scan finds semi-dividing line,
l̂. Let Left(l̂) and Right(l̂) be the regions to
the left and right of l̂, respectively. Due to the
excess area in the scan procedure, we have

0 < Excess(Left(l̂)) < σ,
0 < Excess(Right(l̂)) < σ,

Excess(Left(l̂)) + Excess(Right(l̂)) = σ.

Fig.
(*)

152 D. Adjiashvili and D. Peleg

Clearly, l̂ has to pass inside MidSlice (since it intersects CH(X)). Since both
Area(LeftSlice) ≥ σ and Area(RightSlice) ≥ σ, we can peel off the excess area
from Left(l̂) and Right(l̂) by removing a slice of the appropriate size from each.
The two slices, denoted Sl and Sr respectively, will form a convex region of area
σ, that will be assigned to x. More formally, Let pm be the point of intersection
between l̂ and the boundary of P inside MidSlice (see Figure (∗) above). Let pl

and pr be the points on the boundary of P defining Sl and Sr, namely, such that
Sl = Slice(−−→x, pl, −−−→x, pm) and Sr = Slice(−−−→x, pm, −−→x, pr), and the two slices satisfy

Area(Sl) = Excess(Left(l̂)),

Area(Sr) = Excess(Right(l̂)).

Clearly, removing Sl and Sr from Left(l̂) and Right(l̂), respectively, will create
three balanced regions, P1 = Left(l̂)\Sl, P2 = Right(l̂)\Sr and P3 = Sl∪Sr with
Area(P1) = qσ, Area(P2) = (k − q − 1)σ, Area(P3) = σ, for some 0 < q < k − 2.
Since Area(LeftSlice) ≥ σ and Area(RightSlice) ≥ σ we are guaranteed that Sl

and Sr do not touch CH(X), except for the point x, and therefore P3 does not
contain other points. Finally, P3 is convex since the configuration is compact.
(so if Sl ∪Sr was concave, then the tangent line containing −−→x, pr would have area
less than σ on the smaller side, thus contradicting the compactness assumption.)
Figure (∗) above depicts the decomposition.

In conclusion, in this case we obtain a 3-split.

Solving case (−, −, −): Unlike the solution in the previous section, in this case we
assign a region for x as the first step. This region consists of the entire MidSlice,
but since Area(MidSlice) < σ, we have to add a segment from LeftSlice.

The part to be added to MidSlice will be separated
by a ray −→

x, p̂, where p̂ is a point on the boundary of P
inside LeftSlice . We will not assign LeftSlice entirely,
though, since Area(MidSlice) + Area(LeftSlice) > σ
(as the configuration is compact). The region as-
signed to x, denoted P1, is clearly convex.

The remaining region, P \P1, is clearly concave, thus has to be divided as well.
To do this, we perform a polar scan procedure around x. The first and last scan
lines will form the borders between P1 and P \ P1. Since Area(RightSlice) < σ
and Area(LeftSlice) < σ, the area scanned before the first point and the area
scanned after the last point are both smaller than σ. Lemma 6 yields that a
dividing line exists in this case, thus it will be found by the scan. Note that any
dividing line passes inside CH(X). Therefore, it passes inside MidSlice, which is
contained completely in P1. In conclusion, all three resulting regions are convex,
hence a 3-split is obtained.

Solving case (−, −, +): Let q be the point on the vertex of CH(X), immediately
to the left of x. The point q occurs on the edge of LeftSlice. We start by assigning
q the entire LeftSlice.

Equal-Area Locus-Based Convex Polygon Decomposition 153

Since Area(LeftSlice) < σ, this area is too small, and
we add another slice from MidSlice, much in the same
way we added a slice of LeftSlice in the previous sec-
tion, using a ray −→x, p̄. Again, we do not assign MidSlice
entirely since Area(MidSlice) + Area(LeftSlice) > σ.

Next we assign x the remaining part of MidSlice. It is clearly too small, as
MidSlice itself is too small. Therefore, we add a slice from RightSlice, again using
a ray −→

x, p̂. Since Area(RightSlice) ≥ σ, we do not need all of RightSlice, and
certainly do not cut a piece of CH(X).

Clearly, the two regions assigned to q and x are convex. Their union, however,
is concave, thus, due to the shape of the union of the two regions, the remaining
part is convex. Again, we obtained a 3-split of P .

Solving cases (−, +, +) and (−, +, −): These cases are the most involved ones,
and their analysis is deferred to the full paper.

4 The Overall Algorithm

This section presents the algorithm summarizing the case analysis described in
the previous section. The algorithm has two main stages. Stage I tries to divide
the given polygon P into two convex balanced parts by means of a dividing line.
Lemma 4 gives a sufficient condition for the existence of a dividing line. Our
algorithm checks this condition in two separate procedures. It first attempts to
find a dividing line by a vertical scan of P . If this fails, then a hull scan is
performed. Failure in the second attempt implies that 〈P, X〉 is necessarily a
compact configuration.

Stage II, which is reached in case of failure in Stage I, divides the polygon
into μ balanced convex parts, 2 ≤ μ ≤ 4, following the case analysis described
in Section 3. Lemma 5 guarantees that such a decomposition can be obtained in
this case. The resulting smaller subregions are then further divided recursively.

Finally, we analyze the complexity of the algorithms. We first discuss the
complexity of some of the basic procedures utilized by the algorithm. We assume
that P is given as an ordered sequence of its vertices.

Convex Hull. The complexity of finding the convex hull of a set of k points is
known to be O(k log k).

Vertical scan. The set of event points in our scan procedures is the set of
vertices and points. These need to be sorted. We required the vertices of
P to be sorted to begin with, so sorting all event points should take only
O(n+k log k) (by sorting the k points and merging the two sorted sequences).
The scan itself takes O(n+k) time, thus the total complexity is O(n+k log k).

Hull scan. Once we computed the convex hull of X , this scan can be performed
in O(n) time (assuming that the convex hull computation returns the order
of the points on the convex hull).

154 D. Adjiashvili and D. Peleg

Computing the area of a slice. This can be done using a scan of the vertices
of P , in O(n) time.

Computing the function Excess in a slice. The computation of Excess re-
quires computing the area inside the slice, as well as counting the points
inside the slice. The former can be done in O(n) and the latter in O(k), thus
the total complexity is O(n + k).

Denote by T (n, k) the time complexity of the algorithm for a configuration
〈P, X〉 when P has n vertices and X contains k points. Assume first that stage
I of the algorithm was executed (i.e., P was divided into two parts by a dividing
line). In this case there are two possibilities. If the dividing line was found by
the vertical scan, then

T (n, k) = T (n̂, k̂) + T (n − n̂ + 2, k − k̂) + O(n + k log k)

for some 0 < k̂ < k and 0 < n̂ < n. Otherwise, the dividing line was found
during the hull scan, in which case

T (n, k) = T (n̂, k − 1) + T (n − n̂ + 2, 1) + O(n + k log k)

for some 0 < n̂ < n.
Now assume that stage II of the algorithm was executed. In this case the

algorithm executes one of several procedures and divides P into μ convex areas,
2 ≤ μ ≤ 4. The most time consuming of the different procedures is the last one,
with μ = 2, and it satisfies

T (n, k) = T (n1 + 3, k1) + T (n2 + 3, k2) + O(n + k log k)

for some positive n1, n2 and k1, k2 such that n1 + n2 = n and k1 + k2 = k.
Notice that the total number of divisions performed by the algorithm is at

most k − 1. Therefore, the total time complexity can be bounded by O(k(N̄ +
k log k)), where N̄ is the maximal number of vertices in any polygon throughout
the execution of the algorithm. Clearly N̄ < 3k + n, yielding that

T (n, k) = O(kn + k2 log k).

Theorem 4. For any configuration 〈P, X〉, our algorithm constructs a locus-
based convex subdivision in time O(kn + k2 log k).

References

1. Akiyama, J.M., Kaneko, A., Kano, M., Nakamura, G., Rivera-Campo, E., Toku-
naga, S., Urrutia, J.: Radial perfect partitions of convex sets. In: Akiyama, J.,
Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 1–13. Springer,
Heidelberg (2000)

2. Akiyama, J.M., Nakamura, G., Rivera-Campo, E., Urrutia, J.: Perfect division of
a cake. In: Proc. 10th Canadian Conf. on Computational Geometry, pp. 114–115
(1998)

Equal-Area Locus-Based Convex Polygon Decomposition 155

3. Arkin, R.C.: Behavior-Based Robotics. MIT Press, Cambridge (1998)
4. Aronov, B., Carmi, P., Katz, M.J.: Minimum-cost load-balancing partitions. In:

Proc. 22nd ACM Symp. on Computational geometry (SoCG), pp. 301–308 (2006)
5. Balch, T., Parker, L.E. (eds.): Robot Teams: From Diversity to Polymorphism.

A.K. Peters (2001)
6. Barany, I., Matousek, J.: Simultaneous partitions of measures by k-fans. Discrete

and Computational Geometry, pp. 317–334 (2001)
7. Bast, H., Hert, S.: The area partitioning problem. In: Proc. 12th Canadian Conf.

on Computational Geometry (CCCG), pp. 163–171 (2000)
8. Bereg, S.: Equipartitions of measures by 2-fans. Discrete and Computational Ge-

ometry, pp. 87–96 (2005)
9. Bespamyatnikh, S., Kirkpatrick, D., Snoeyink, J.: Generalizing ham sandwich cuts

to equitable subdivisions. Discrete and Computational Geometry, pp. 605–622
(2000)

10. Bespamyatnikh, S.: On partitioning a cake. In: Akiyama, J., Kano, M. (eds.)
JCDCG 2002. LNCS, vol. 2866, pp. 60–71. Springer, Heidelberg (2003)

11. Beyer, W.A., Zardecki, A.: The early history of the ham sandwich theorem. Amer-
ican Mathematical Monthly, pp. 58–61 (2004)

12. Carlsson, J.G., Armbruster, B., Ye, Y.: Finding equitable convex partitions of
points in a polygon (Unpublished manuscript, 2007)

13. Choset, H.: Coverage for robotics - a survey of recent results. Annals of Mathe-
matics and Artificial Intelligence 31, 113–126 (2001)

14. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry: Algorithms and Applications. Springer, Heidelberg (1997)

15. Fox, D., Ko, J., Konolige, K., Limketkai, B., Schulz, D., Stewart, B.: Distributed
multi-robot exploration and mapping. In: Proc. IEEE 2006 (2006)

16. Hert, S., Lumelsky, V.J.: Polygon area decomposition for multiple-robot workspace
division. International Journal of Computational Geometry and Applications 8,
437–466 (1998)

17. Ito, H., Uehara, H., Yokoyama, M.: 2-dimension ham sandwich theorem for par-
titioning into three convex pieces. In: Akiyama, J., Kano, M., Urabe, M. (eds.)
JCDCG 1998. LNCS, vol. 1763, pp. 129–157. Springer, Heidelberg (2000)

18. Steinhaus, H., et al.: A note on the ham sandwich theorem. Mathesis Polska, pp.
26–28 (1938)

19. Peleg, D.: Distributed coordination algorithms for mobile robot swarms: New di-
rections and challenges. In: Pal, A., Kshemkalyani, A.D., Kumar, R., Gupta, A.
(eds.) IWDC 2005. LNCS, vol. 3741, pp. 1–12. Springer, Heidelberg (2005)

On the Power of Local Orientations�

Monika Steinová

Department of Computer Science, ETH Zurich, Switzerland
monika.steinova@inf.ethz.ch

Abstract. We consider a network represented by a simple connected
undirected graph with N anonymous nodes that have local orientations,
i.e. incident edges of each vertex have locally-unique labels – port names.

We define a pre-processing phase that enables a right-hand rule using
agent (RH-agent) to traverse the entire graph. For this phase we design
an algorithm for an agent that performs the precomputation. The agent
will alter the network by modifying the local orientations using a sim-
ple operation of exchanging two local labels in each step. We show a
polynomial-time algorithm for this precomputation that needs only one
pebble and O(log N) memory in the agent.

Furthermore we design a similar algorithm where the memory that
the agent uses for the precomputation is decreased to O(1). In this case,
the agent is not able to perform some operations by itself due to the lack
of memory and needs support from the environment.

Keywords: Mobile computing, local orientation, right-hand rule.

1 Introduction

The problem of visiting all nodes of a graph arises when searching for data in
a network. A special case of this problem, when nodes need to be visited in
a periodic manner, is often required in network maintenance. In this paper, we
consider the task of periodic exploration by a mobile entity (called robot or agent)
that is equipped with a small memory.

We consider an undirected graph that is anonymous, i.e. nodes in the graph
are neither labeled nor marked. The way how we allow the agent to perceive
the environment are the local orientations: while visiting a node v, the agent is
able to distinguish between incident edges that are labeled by numbers 1 . . . dv,
where dv is the degree of the vertex v. A local orientation uniquely determines
the ordering of the incident edges of a vertex.

Dobrev et al. [7] considered the problem of perpetual traversal (an agent
visits every node infinitely many times in a periodic manner) in an anonymous
undirected graph G = (V, E). The following traversal algorithm called right-
hand rule is fixed: “Start by taking the edge with the smallest label. Afterwards,
whenever you come to a node, continue by taking the successor edge (in the local
� This research was done as a part of author’s Master Thesis in Comenius University,

Bratislava, Slovakia.

A. Shvartsman and P. Felber (Eds.): SIROCCO 2008, LNCS 5058, pp. 156–169, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Power of Local Orientations 157

orientation) to the edge via which you have arrived”. They showed that in every
undirected graph the local orientation can be assigned in such a way that the
agent obeying the right-hand rule can traverse all vertices in a periodic manner.
Moreover, they designed an algorithm that, using the knowledge of the entire
graph G, is able to precompute this local orientation so that the agent visits
every node in at most 10|V | moves.

Further investigation of this problem was done by Ilcinkas and by Ga̧sieniec et
al. [12,11]. In [12] the author continues in the study of the problem by changing
the traversal algorithm and thus decreasing the number of moves in perpetual
traversal. By making the agent more complex (a fixed finite automaton with
three states) the author designed an algorithm that is able to preprocess the
graph so that the period of the traversal is at most 4|V | − 2. In the most recent
publication [11] the authors use a larger fixed deterministic finite automaton,
and are thereby able to decrease the period length to at most 3.75|V | − 2.

1.1 Our Results

In this paper we have returned to the original problem investigated by Dobrev et
al. in [7] – we want to preprocess the graph so that an agent obeying the right-
hand rule will visit all vertices. We are answering the questions: Is it possible to
do the changes of the local orientation locally? How much memory do we need
to make these local changes?

We consider a simple undirected anonymous graph G = (V, E) with a local
orientation. We design an algorithm for a single agent A, that is inserted into
the graph and performs the precomputation so that later an agent B obeying
the right-hand rule is able to visit all nodes in a periodic manner. The agent
A recomputes the local orientations in polynomial time using O(log |V |) bits of
memory and one pebble. Furthermore, we modify this algorithm using rotations
of local orientations to decrease the memory in the agent to a constant, at the
expense of losing the termination detection.

1.2 Related Work

The task of searching and exploring the unknown environment is studied under
many different conditions. The environment is modeled either as geometric plane
with obstacles or as graph-based, in which the edges give constraints on possible
moves between the nodes. The first approach is often used to model landscape
with possible obstacles where a single or multiple mobile entities are located.
They navigate in the environment cooperatively or independently using sensors,
vision, etc. to fulfill a particular mission. For more details see for example the
survey [15].

The graph-based approach was investigated under various assumptions. The
directed version where the mobile entities (called robots or agents) have to explore
a strongly connected directed graph was extensively studied in the literature
([1,8,5]). In this scenario, agents are able to move only along the directed edges
of the graph. The undirected version where the edges of a graph can be traversed

158 M. Steinová

in both directions was studied in [6, 13, 14, 2, 9]. The labeling of the graph is
studied under two different assumptions: either it is assumed that nodes of the
graph have unique labels and the agent is able to recognize them (see [5, 13])
or it is assumed that nodes are anonymous (see [16]) with no identifiers. In
the second case, the common requirement is that agents can locally distinguish
between incident edges.

As the graph can be large and there can be more agents independently or coop-
eratively operating in it, various complexity measures were considered. Therefore
not only the time efficiency but also both the local memory of the agent and
its ability to mark the graph is investigated. The agent traversing the graph is
often modeled as a finite automaton. This basic model allows the agent to use a
constant amount of memory that is represented by its states. In 1978 Budach [4]
proved that it is not possible to explore an arbitrary graph by a finite automa-
ton without marking any node. Later Rollik [16] (improved by Fraigniaud et al.
in [10]) proved that no finite group of finite automata can cooperatively explore
all cubic planar graphs. These negative results lead to increasing the constant
memory the finite automaton may use. The agent is given a pebble that can be
dropped in a node to mark it and later taken and possibly moved to different
nodes. Bender et al. [3] show that strongly connected directed graphs with n
vertices can be traversed by an agent with a single pebble that knows the upper
bound on the number of vertices, or with Θ(log log n) pebbles if no upper bound
is known.

1.3 Outline of the Paper

In Section 2 we introduce the notation used and give basic definitions and prop-
erties. Section 3 contains the algorithm for precomputing the graph in a local
manner with O(log |V |) memory in the agent and one pebble in the graph. A
modification of the algorithm from Section 3 is presented in Section 4. Here,
rotations of the local orientation in vertices are used to decrease the memory
that agent needs for the precomputation. On one hand, the memory complexity
is minimized but on the other hand, the termination detection using so little
memory remains an open problem. However, for example marking the initial
edge in the graph can be used to terminate this algorithm. Section 5 contains
the conclusion and the discussion about open problems.

2 Notation and Preliminaries

Let G be a simple, connected, undirected graph. The degree of vertex v will
be denoted dv. In our model we assume that each vertex is able to distinguish
its incident edges by assigning unique labels to them. Note that by such an
assignment each edge has two labels – one in each endpoint. For simplicity we
assume that for a vertex v these labels are 1, 2, . . . dv. This labeling is called local
orientation and denoted πv.

Note that the existence of a local orientation in every vertex is a very natural
requirement. Indeed, in order to traverse the graph, agents have to distinguish

On the Power of Local Orientations 159

between incident edges. The labels of the incident edges in a vertex v define
a natural cyclic ordering, where succv(e) = (πv(e) mod dv) + 1 is the successor
function and the corresponding predecessor function predv(e) is defined similarly.

We want to construct a cycle in G that contains all vertices of G and satisfies
the right-hand rule (RH-rule for short): “If the vertex v is entered by the edge e,
leave it using an edge with label succv(e).” We will call the traversal according
to the RH-rule RH-traversal. More precisely we want to construct a cycle that
contains all vertices such that RH-traversal started in any vertex of G by edge
with label 1 leads to a visit of all nodes of G. We try to construct the cycle in a
local manner with minimization of memory requirements for computations. The
local computations are done by inserting an agent into the graph G and altering
the local orientation by using a small amount of memory.

Rotation of a local orientation πv by k steps is a local orientation π′
v such that

(πv(e) + k) mod dv + 1 = π′
v(e). An obvious Lemma follows.

Lemma 1. Rotations of local orientation in a vertex of a simple, undirected,
connected graph G do not have any influence on traversals according to the RH-
rule in G. Formally, πv and π′

v define the same succv(·) function.

In certain situations we will need to speak about traversing edges in a certain
direction. In such cases we will call the directed edges arcs and undirected edges
edges. In the further text, we will denote the number of vertices of the graph by
N = |V | and the number of its edges by M = |E|.

Note that RH-traversal is reversible and therefore the trajectory of RH-
traversal is always cycle. These trajectories are called RH-cycles. The initial
arc of an RH-traversal unambiguously determines a RH-cycle. The graph G is
always a union of disjoint RH-cycles.

3 Algorithm MergeCycles

Our algorithm will connect multiple RH-cycles into a single RH-cycle that passes
through all vertices of graph G. This is done by applying rules Merge3 and
EatSmall from [7] in a local manner. In this section we will discuss the rules, their
implementation and we show some interesting properties of the algorithm. In the
beginning we choose one RH-cycle and call it the witness cycle. By applying rules
Merge3 and EatSmall the witness cycle is prolonged and new vertices are added.
We show that if no rule can be applied in any vertex of the witness cycle then it
contains all vertices of graph G. To know when to terminate the algorithm, we
will count the number of steps while no rule could be applied.

The desired output of this algorithm is a new labeling of the edges in graph
G such that the RH-traversal started in any vertex using the edge with label 1
will visit all vertices in G. Note that after the final witness cycle is constructed,
our preprocessing agent can traverse the witness cycle once and rotate labeling
in each vertex so that the outgoing arc with label 1 will be an arc of the witness
cycle.

160 M. Steinová

3.1 Rules Merge3 and EatSmall

Rule Merge3: [7] To apply this rule, we have to find three different RH-cycles
and then connected them by exchanging labels so that the remaining RH-cycles
stay unchanged. More precisely, let x1, x2 and x3 be three incoming arcs to a
vertex v that define three different RH-cycles C1, C2 and C3 respectively. Then
we change the ordering of the edges in v so that the successor of x2 becomes
the successor of x1, successor of x3 becomes successor of x2, and successor of
x1 becomes successor of x3, while keeping the rest of the relative ordering edges
unchanged. For illustration see Figure 1.

2
4

5

6

8

1

8

6

4

2

3

5

7

C3

v

C1

x2 = 3
C2

x1 = 1

x3 = 7

v

Fig. 1. Applying rule Merge3

To apply Merge3, we need to identify three arcs that enter v and determine
three different RH-cycles (C1, C2 and C3). Note that we entered v while RH-
traversing the witness cycle. Therefore we pick the arc used to enter v as one of
those three arcs. The remaining two arcs are found by sequentially testing all
incoming arcs in the order given by the current local orientation in v. The pebble
is used to mark the processed vertex. To check whether two incoming arcs e1
and e2 define different RH-cycles, the agent RH-traverses the cycle defined by
e2 and checks whether it encounters e1 before returning to e2. The agent will
either find three different RH-cycles and merge them together, or it will ensure
that no three different RH-cycles pass through vertex v.

Note that rule Merge3 can only be applied finitely many times, as after each
application of the rule Merge3 the number of cycles in the graph decreases by
two. If there are three different RH-cycles in vertex v, our approach always
detects these cycles and rule Merge3 is applied. Notice that for these operations
we need one pebble and O(1) local variables of size O(log N) bits in the agent’s
memory. The time complexity of one application of the rule Merge3 in a vertex
v is O(Mdv).

Rule EatSmall [7]: To apply this rule in a vertex v, we have to find two
different RH-cycles where the vertex v appears in one of them at least twice.
More precisely, let x and y be two incoming arcs to a vertex v that define two

On the Power of Local Orientations 161

2
4

8

5

8

7

7

2
5

3

4

6

1

z = 6

C1

x = 3

C2

y = 1

C2

C1

v

v

Fig. 2. Applying rule EatSmall. The edge y is the incoming edge via which the agent
entered the vertex v and thus it is a part of the witness cycle.

different RH-cycles C1 and C2 respectively; let z be the incoming arc to the
vertex v by which C1 returns to v after leaving via the successor of arc x. Then
we modify the ordering of the edges in v such that the successor of x becomes
the successor of y, the old successor of y becomes the successor of z, and the
old successor of z becomes the successor of x, while preserving the order of the
remaining edges. The application of the rule is shown in Figure 2. Note that the
rule is applied on an ordered triplet of edges (y, x, z).

The local version of rule EatSmall in a vertex v is similar to the Merge3 rule.
Note that blindly applying the rule EatSmall may lead to deadlocks when a part
of a cycle will be transferred back and forth between two cycles. To prevent the
deadlocks, we will always use our witness cycle as the cycle C2 in our algorithm.

Note that the rule EatSmall can only be applied finitely many times as after
an application of the rule EatSmall the witness cycle is prolonged. By similar
argumentation as for rule Merge3, if two cycles C1 and C2 with required prop-
erties pass through vertex v, their are found and the rule EatSmall is applied.
Again, one pebble and O(1) local variables of size O(log N) are needed, and the
time complexity of one application of the rule EatSmall in a vertex v is O(Mdv).

The rule EatSmall has to be applied with care. More precisely, according to
Figure 2, if the edge z (the edge via which the agent enters for the second time
the vertex v in the RH-traversal of the cycle C1 that started via the edge x)
is the successor of edge y, the rule EatSmall will fail. The problem that occurs
here is that setting the successor of z to be the successor of y means setting the
successor of z to z and that is not allowed. However, our algorithm processes
edges incident with a vertex in order given by the local orientation, starting by
the arc of the witness cycle (in Figure 2 the arc y). Thus we will never encounter
such a situation. In sequential testing of edges, the agent first picks edge x and
then verifies the existence of edge z. If z is found, it will be the edge that was
not processed at that point by the agent. Thus in the ordering given by the local

162 M. Steinová

orientation and the initial incoming edge to v edge z is an edge that is always
later than the edge x.

Lemma 2. Let G = (V, E) be a simple undirected connected graph. Let v ∈ V
and x ∈ V be two neighbouring vertices such that the witness cycle (denoted by
W) passes through v but not through x. Then, either the rule Merge3 or EatSmall
can be applied in vertex v so that vertex x will be added to the witness cycle.

Proof. As vertices v and x are neighbouring, the arcs
−−−→
(v, x) and

←−−−
(v, x) determine

two RH-cycles. If these RH-cycles are different, three different RH-cycles pass
through vertex v and rule Merge3 can be applied. In the case where both arcs
determine the same RH-cycle C, we claim that C passes through vertex v at least
twice and thus the rule EatSmall can be applied here. By the contradiction: if
the RH-cycle C passes through vertex v only once, the successive arc of

−−−→
(x, v)

is arc
←−−−
(x, v). Then by the definition of the cyclical ordering succ(·), vertex v has

degree 1 and that is the contradiction.

Lemma 3. Execute the algorithm MergeCycles on a simple connected undirected
graph G and denote the resulting witness cycle by W . For any RH-cycle C in
the resulting graph there is a vertex w such that w ∈ C and w ∈ W .

Proof. As the graph is connected, there exists a path between a vertex in witness
cycle W and a vertex in C. Therefore by Lemma 2 rules Merge3 and EatSmall
were applied and all vertices on this path belong to W .

Lemma 4. During our algorithm MergeCycles in each vertex v of a simple con-
nected undirected graph G = (V, E) we apply all the rules Merge3 and EatSmall
at the first time when the vertex is processed. In other words, once we finish
processing a particular vertex v for the first time, this vertex is done – no rule
applications in v will be possible in the future.

Proof. Follows from previous discussion.

Theorem 1. Let G be a simple connected undirected graph. Suppose that the
algorithm MergeCycles already terminated on G. Let W be the witness cycle
constructed by the algorithm. Then W contains all the vertices in G.

Proof. By contradiction. Let v /∈ W . Then there is a path between a vertex in
W and v. Take the first vertex x on this path that is not in W (its predecessor
y is in W). By Lemma 2 either Merge3 or EatSmall can be applied in y.

The time complexity of our algorithm MergeCycles is O(M2Δ), where Δ is the
maximal degree of a vertex. The RH-cycle consists of at most all edges of graph
in each direction and thus its length is O(M). The termination detection is solved
by comparing the number of the consecutive vertices of the cycle where no rule
is applied with the length of the witness cycle. This can be done in O(log N)
memory. To sum up, we used a few variables of size O(log N) in the agent and
a single pebble.

On the Power of Local Orientations 163

4 Algorithm MergeCycles+ Using Constant Memory

In this section we present the modification of algorithm MergeCycles where ro-
tating local orientations will enable us to decrease the memory needed in the
agent to apply rules Merge3 and EatSmall. For now, we will assume that the
vertices of graph G have degrees greater than one.

Definition 1. Let G = (V, E) be a simple undirected connected graph. Denote
incident edges of vertex v by e1, . . . , edv , so that ei = (v, ui). Let πv, πui be the
local orientations in vertices v, ui respectively. We will call label πv(ei) the inner
label of the edge ei in vertex v and the label πui(ei) the outer label of the edge ei

in vertex v.

As by Lemma 1 the rotations of local orientation do not have any influence on
RH-rule, we will use these rotations to store information in local orientations.
The general idea of the algorithm MergeCycles+ is to set all outer labels of the
incident edges of a vertex v to 1 and then find and mark representative arcs that
are used in rules Merge3 and EatSmall by outer label 2.

4.1 Memory Needed by Our Algorithm

When trying to identify and minimize the memory requirements, we need to be
more precise on how the local orientation changes are realized. Note that we can
not get rid of the variable that our agent uses for storing the label of the incoming
edge. By losing of this information the agent lost the sense of direction and it
will not be able to distinguish between edges in G. Note that we will only use
this as a read-only variable. Moreover, depending on the hardware realization,
this variable does not even have to be stored in the agent’s memory – the agent
may be able to determine its value on demand from its environment. Thus this
variable will not be counted in the agent’s memory requirements.

In our algorithm the following local operations are necessary: rotation of the
entire local orientation, application of rule Merge3 and application of rule EatS-
mall. To realize these operations, the agent is able to use two primitives that
relabel edges in the current vertex. The first primitive rotates the local orienta-
tion in vertex v by one. By multiple uses of this primitive the agent is able to
rotate the local orientation so that the label of the incoming edge is 1 or 2. The
second primitive operates in a vertex where three incident edges are marked by
outer label 2 and the rest have outer label 1. It picks the three marked edges
and performs changes in the local orientation as it is done in rules Merge3 and
EatSmall.1 (As we know that the edges for either rule are tested sequentially,
their correct order can be determined from the local orientation.)

The last part of the algorithm MergeCycles which forces the agent to use
Ω(log N) memory is the knowledge of the length of the witness cycle and the
counter for the number of vertices visited in a row in which neither the rule
1 The application of the rules Merge3 and EatSmall are in fact the same, the difference

is only in the conditions the edges have to satisfy.

164 M. Steinová

Merge3 nor rule EatSmall could be applied. The price for getting rid of these
computations is that we lose the termination detection – the precomputing agent
will RH-traverse the witness cycle forever.

As the agent will execute the algorithm MergeCycles+ forever, by attempting
to apply the modified rules of Merge3 and EatSmall, the local orientations will be
changing. This does not match the desired output of the algorithm MergeCycles:
There is no guarantee that if the RH-agent starts via the edge with label 1, then
it will traverse the witness cycle. (Note that e.g. by marking the starting edge
of the algorithm, termination detection can be solved easily and then the agent
obeying the RH-rule can start the traversal via the marked edge and be sure to
traverse the witness cycle.)

4.2 Basic Instructions

The entire algorithm for our agent can be specified using the following basic
instructions (where e is the edge used to enter vertex v):

– place/pick up pebble, test for its presence in v
– leave vertex v via e
– leave vertex v via succv(e)
– two tests: whether the edge e has inner label 1 or 2
– apply one of the primitives discussed in Subsection 4.1

Using these instructions we can build the following procedures (again, where
e = (uk, v) is the incoming edge via which the agent entered v):

– rotate local orientation so that πv(e) = 1, or so that πv(e) = 2
– two tests: πuk

(e) = 1? and πuk
(e) = 2?

– remember the incoming edge e by setting πv(e) = 1
– rotate local orientation in uk so that πuk

(e) = 1 or πuk
(e) = 2

– traverse all ui in the order given by local orientation πv

– for all i ∈ {1, . . . , dv} set πui(v, ui) = 1 and afterwards find e
(This is realized as follows: rotate πv so that πv(e) = 1, set πuk

(e) = 1 and
then repeatedly traverse via succv(e), set the outer label of the edge to 1,
and return back to v until the incoming edge has the inner label 1.)

We will show how (according to the order given by the local orientation) we
can process all edges incident with a vertex v. During this processing we will use
suitable rotations of local orientations in such a way that whenever we enter v
we will be able to identify the initial and the currently processed edge. We start
by placing a pebble into v, setting outer label 2 to the initial edge and outer
label 1 to the remaining edges. We set the inner label of the initial edge to 1
and we start to process it. Whenever we are going to process the next edge, we
rotate the local orientation by one so that the currently processed edge always
has the inner label 1. If after the rotation of local orientation we find out that
the edge to process already has outer label 2, we know that we processed all
incident edges and we are done.

On the Power of Local Orientations 165

The test for two disjoint RH-cycles passing through vertex v is done as follows:
The agent sets the outer labels of incident edges so that two tested edges e1 and
e2 (in the incoming direction they represent two tested RH-cycles) have outer
label 2 and the rest of incident edges have outer label 1. Then it rotates the local
orientation in v so that e1 has inner label 1, inserts pebble to v and RH-traverses
RH-cycle via the successor of edge e1. Sooner or later the agent will enter v via
edge e1 (and recognize this thanks to the pebble and the local orientation). The
cycles are disjoint iff the agent did not enter v via e2 during this RH-traversal.

The discussed operations will now be used to describe the modified rules
Merge3 and EatSmall.

4.3 Changing the Rule Merge3 to Merge3+

The general idea is to set all outer labels of the incident edges of vertex v to 1,
sequentially test edges to find three representatives of different RH-cycles and
finally to apply the instruction to change the local orientation.

The simplified description of the rule Merge3+ applied in a vertex v follows
(for illustration see Figure 3):

– Mark the incoming edge e with inner label 1.
– Sequentially traverse all incident edges of v and set their outer label to 1.
– Set outer label of e to 2 (this will remain unchanged during the rule

Merge3+), denote the RH-cycle represented by incoming arc of e as C1.

u5

u1

u3

u4

u6

u5

a2

a4

a6

a5

a)

u2

v

u3

u2

u4 u5

1

1
d)

2

3

4 v

2

C1

2

C2

1

1

3

5

u3

u2

u4c) u5

1

1

v

C1

2

1
4 3

1

u3

u2

u4

1 2

v

C1

2

C2

f)

6

5
43

2
1

12

C3

1
u3

u2

u4

1

1 2

v

C1

2

C2

e)

54
3
2 1

6

2

1

b)

u1

u3

u2

u4

1

1

1
1

1

1

u6u6

a3
5

6

a1

u6

16

5

1

6
u6

12

4

2

1

4
3

5 v

6

12

u5

u1

u1

u5

u1
u1

Fig. 3. a) initial state, edge e5 used to enter v b) outer labels set to 1 c) witness
cycle C1 denoted by outer label 2 d) edge e6 tested, a disjoint RH-cycle C2 found e)
edge e1 tested, the cycle is found to be C1, thus e1 will be unmarked now f) edge e2

tested, RH-cycle C3 found, rule Merge3 can be applied to merge the three cycles

166 M. Steinová

– Sequentially process incident edges of v starting with the edge succv(e).
While doing this, rotate local orientation so that the processed edge is always
marked by inner label 1. Find the first edge e′ such that its incoming arc
represents a RH-cycle C2 different from C1 and mark it by outer label 2.

– Continue in the process of marking the processed edge by inner label 1 with the
edge succv(e′) and find the first edge e′′ such that its incoming arc represents
a RH-cycle C3 different from C1 and C2. Mark it by outer label 2.

– If these three edges are found, the call of instruction for changing the local
orientation is made. Otherwise we reach an edge with outer label 2 (edge e).
In this case, the agent found out that three disjoint cycles are not present.

4.4 Changing the Rule EatSmall to EatSmall+

The change of rule EatSmall to EatSmall+ is similar to the change in Subsection
4.3. The idea is same as the one in the previous subsection: we split edges into
two partitions – those that will be used in the rule EatSmall (with outer label 2)
and the rest (with outer label 1) and apply the corresponding primitive. Figure 4
illustrates the application of the rule EatSmall+.

4.5 Summary

In this section we will summarize the modifications of the algorithm MergeCycles
to the algorithm with constant memory for the agent – MergeCycles+.

u1

u3

u4 u5

a6

a)

u1

u3

u4 u5

3

b)

u1

u3

u4c)

6

u1

u3

u4d) u4 u5e)

u1

u5f)

6

5

2

a5

a3

a1

u6

1 1

1

11

1

4
5

1
2

u6

1

1

2

3

5

1

u5

1 3

1

u6

1

2

2

4 5

1

3

1 2

1

1 2 1

C2

u6

u4

21

2 1

11

4

C1

a4

a2

u2 u2 u2

u2

v

v

1

u3

u2

1 u6

3
1

6
v4

u5

1

2 1

6

54

u6 1

4 5

2

3
6

v

v

2

2

vu3

u2 u1

2

6

Fig. 4. a) initial state, edge e5 is the incoming edge b) outer labels are set to 1 c)
edges e5 and e6 are marked by outer label 2 and their RH-cycles tested for the rule
EatSmall, answer is negative d) edge e6 is unmarked (outer label set to 1), edge e1 is
processed now e) the answer is positive – two RH-cycles that are needed in the rule
EatSmall were found and the rule EatSmall can be applied f) after the application of
the rule EatSmall

On the Power of Local Orientations 167

Until now, we assumed that the vertices of graph G have degrees greater than
one. We will now explain how to handle vertices with degree one. When we
start dealing with vertex v, we first need to process neighbouring vertices with
degree 1 and then we can ignore them in the applications of the rules Merge3
and EatSmall. In the case when a neighbouring vertex u of vertex v has de-
gree 1 and the edge (u, v) is not the edge we just used to enter v, we check
whether u is present on the witness cycle and if not, we add it by using the
rule EatSmall. In the case when edge e = (u, v) is the edge via which agent
entered v, either the agent already visited more than one vertex (and thus al-
ready visited v and processed it at that time, see Lemma 4), or we can find the
first incident edge of v with degree greater than one and use it as the incom-
ing one. The only case when such an edge does not exist is if the topology of
the graph is a star. This can be easily checked in the beginning of the entire
algorithm.

By Lemma 4 and the fact that in MergeCycles+ the RH-cycles are added to
the witness cycle so that they are traversed in the first RH-traversal of the formed
witness cycle, it is clear that to build the whole witness cycle the preprocessing
agent only has to RH-traverse the witness cycle once. After the agent returns to

Algorithm 1. Algorithm MergeCycles+
1: check whether the graph is a star, if so, finish the algorithm, any local orientation

forms the witness cycle
2: start the RH-traversal via edge with label 1

3: procedure RH-traversal(v,e) // agent entered vertex v via e = (u, v)
4: if vertex u has degree 1 then
5: if the agent already visited two or more vertices then
6: continue with RH-traversal via edge succv(e)
7: else
8: execute this function with e = predv(e)
9: end if

10: else
11: rotate local orientation so that πv(e) = 1
12: for all neighbouring vertices w do
13: set the outer label of edge (v, w) to 1
14: end for
15: for all neighbouring vertices w do
16: if dw = 1 and w is not on the witness cycle then
17: apply EatSmall to add w to witness cycle
18: end if
19: end for
20: while it is possible do
21: ignoring neighbours with degree 1, apply Merge3+ and EatSmall+
22: end while
23: continue the RH-traversal via succv(e)
24: end if
25: end procedure

168 M. Steinová

the initial arc where the algorithm MergeCycles+ begun, no rule can be applied
in its future RH-traversal.

The time complexity of this algorithm is polynomial. The agent doing the
precomputations needs one pebble and O(1) memory. The local orientation is
used to store a few bits of information, at most O(log N) at any time.

5 Conclusions, Open Problems, and Further Research

We designed an algorithm that can create a right-hand rule cyclic walk of length
O(|E|) that contains all vertices of the given connected simple undirected graph.
This goal is achieved by changes in the local orientations. The algorithm is
performed by an agent that only uses O(log |V |) memory and a single pebble.
We have discussed properties of this algorithm and we have shown how it is
possible to further decrease the memory requirements of the agent. We believe
that the main contribution of this paper is showing that local orientations can be
used for storing information and decreasing the agent’s memory requirements.

The termination detection in algorithm MergeCycles+ remains an open prob-
lem. Further research can be focused on the amount of the memory that is
needed to create a witness cycle of length O(|V |). Another interesting question
that needs further research is the amount of useful information that can be stored
at once in the local orientations during the execution of an algorithm.

Acknowledgements

I would like to thank Michal Forǐsek for many valuable notes, helpful com-
ments and detailed suggestions during the preparation of this manuscript, to
Ján Oravec for fruitful discussions and to Rastislav Královič for introducing the
topic and guiding me in my Master Thesis.

References

1. Albers, S., Henzinger, M.R.: Exploring unknown environments. In: STOC, pp. 416–
425 (1997)

2. Awerbuch, B., Betke, M., Rivest, R.L., Singh, M.: Piecemeal graph exploration by
a mobile robot. Information and Computation 152(2), 155–172 (1999)

3. Bender, M.A., Fernández, A., Ron, D., Sahai, A., Vadhan, S.: The power of a
pebble: exploring and mapping directed graphs. In: STOC 1998. Proceedings of
the thirtieth annual ACM symposium on Theory of computing, pp. 269–278. ACM,
New York (1998)

4. Budach, L.: Automata and labyrinths. Math. Nachr. 86, 195–282 (1978)

5. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. Graph The-
ory 32(3), 265–297 (1999)

6. Dessmark, A., Pelc, A.: Optimal graph exploration without good maps. Theor.
Comput. Sci. 326(1-3), 343–362 (2004)

On the Power of Local Orientations 169

7. Dobrev, S., Jansson, J., Sadakane, K., Sung, W.-K.: Finding short right-hand-on-
the-wall walks in graphs. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS,
vol. 3499, pp. 127–139. Springer, Heidelberg (2005)

8. Fraigniaud, P., Ilcinkas, D.: Digraphs exploration with little memory. In: Diek-
ert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 246–257. Springer,
Heidelberg (2004)

9. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a
finite automaton. Theor. Comput. Sci. 345(2-3), 331–344 (2005)

10. Fraigniaud, P., Ilcinkas, D., Rajsbaum, S., Tixeuil, S.: Space lower bounds for graph
exploration via reduced automata. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005.
LNCS, vol. 3499, pp. 140–154. Springer, Heidelberg (2005)

11. Ga̧sieniec, L., Klasing, R., Martin, R., Navarra, A., Zhang, X.: Fast periodic graph
exploration with constant memory. In: Prencipe, G., Zaks, S. (eds.) SIROCCO
2007. LNCS, vol. 4474, pp. 26–40. Springer, Heidelberg (2007)

12. Ilcinkas, D.: Setting port numbers for fast graph exploration. In: Flocchini, P.,
G ↪asieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 59–69. Springer, Heidel-
berg (2006)

13. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. In: SODA 1998.
Proceedings of the ninth annual ACM-SIAM symposium on Discrete algorithms,
Philadelphia, PA, USA, Society for Industrial and Applied Mathematics, pp. 316–
322 (1998)

14. Panaite, P., Pelc, A.: Impact of topographic information on graph exploration
efficiency. Networks 36(2), 96–103 (2000)

15. Rao, N., Kareti, S., Shi, W., Iyenagar, S.: Robot navigation in unknown terrains:
Introductory survey of non-heuristic algorithms (1993)

16. Rollik, H.A.: Automaten in planaren graphen. In: Proceedings of the 4th GI-
Conference on Theoretical Computer Science, London, UK, pp. 266–275. Springer,
Heidelberg (1979)

Best Effort and Priority Queuing Policies

for Buffered Crossbar Switches

Alex Kesselman1, Kirill Kogan2, and Michael Segal3

1 Google, Inc.
alx@google.com

2 Cisco Systems, South Netanya, Israel
and

Communication Systems Engineering Dept., Ben Gurion University, Beer-Sheva,
Israel

kkogan@cisco.com
3 Communication Systems Engineering Dept., Ben Gurion University, Beer-Sheva,

Israel
segal@cse.bgu.ac.il

Abstract. The buffered crossbar switch architecture has recently gained
considerable research attention. In such a switch, besides normal input
and output queues, a small buffer is associated with each crosspoint. Due
to the introduction of crossbar buffers, output and input contention is
eliminated, and the scheduling process is greatly simplified. We analyze
the performance of switch policies by means of competitive analysis,
where a uniform guarantee is provided for all traffic patterns. The goal
of the switch policy is to maximize the weighted throughput of the switch,
that is the total value of packets sent out of the switch. For the case of
unit value packets (Best Effort), we present a simple greedy switch policy
that is 4-competitive. For the case of variable value packets, we consider
the Priority Queueing (PQ) mechanism, which provides better Quality of
Service (QoS) guarantees by decreasing the delay of real-time traffic. We
propose a preemptive greedy switch policy that achieves a competitve
ratio of 18. Our results hold for any value of the switch fabric speedup.
Moreover, the presented policies incur low overhead and are amenable
to efficient hardware implementation at wire speed. To the best of our
knowledge, this is the first work on competitive analysis for the buffered
crossbar switch architecture.

1 Introduction

The main task of a router is to receive a packet from the input port, to find its
destination port using a routing table, to transfer the packet to that output port,
and finally to transmit it on the output link. The switching fabric in a router is
responsible for transferring packets from the input ports to the output ports. If
a burst of packets destined to the same output port arrives, it is impossible to
transmit all the packets immediately, and some of them must be buffered inside
the switch (or dropped).

A. Shvartsman and P. Felber (Eds.): SIROCCO 2008, LNCS 5058, pp. 170–184, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Best Effort and PQ Policies for Buffered Crossbar Switches 171

A critical aspect of the switch architecture is the placement of buffers. In the
output queueing (OQ) architecture, packets arriving from the input lines imme-
diately cross the switching fabric, and join a queue at the switch output port.
Thus, the OQ architecture allows one to maximize the throughput, and permits
an accurate control of packet latency. However, in order to avoid contention, the
internal speed of an OQ switch must be equal to the sum of all the input line
rates. The recent developments in networking technology produced a dramatic
growth in line rates, and have made the internal speedup requirements of OQ
switches difficult to meet. This has in turn generated great interest in the input
queueing (IQ) switch architecture, where packets arriving from the input lines
are queued at the input ports. The packets are then extracted from the input
queues to cross the switching fabric and to be forwarded to the output ports.

It is well-known that the IQ architecture can lead to low throughput, and
it does not allow the control of latency through the switch. For example, for
random traffic, uniformly distributed over all outputs, the throughput (i.e. the
average number of packets sent in a time unit) of an IQ switch has been shown
to be limited to approximately 58% of the throughput achieved by an OQ switch
[16]. The main problem of the IQ architecture is head-of-line (HOL) blocking,
which occurs when packets at the head of various input queues contend on a
specific output port of the switch. To alleviate the problem of HOL blocking,
one can maintain at each input a separate queue for each output. This technique
is known as virtual output queueing (VOQ).

Another method to get the delay guarantees of an IQ switch closer to that of
an OQ switch is to increase the speedup S of the switching fabric. A switch is
said to have a speedup S, if the the switching fabric runs S times faster than
each of the input or the output lines. Hence, an OQ switch has a speedup of
N (where N is the number of input/output lines), while an IQ switch has a
speedup of 1. For values of S between 1 and N packets need to be buffered at
the inputs before switching as well as at the outputs after switching. In order
to combine the advantages of both OQ and IQ switches, combined input-output
queued (CIOQ) switches make a tradeoff between the crossbar speedup and the
complexity of scheduling algorithms they usually have fixed small speedup of
two, and thus need buffer space at both input and output side. This architecture
has been extensively studied in the literature, see e.g. [8,11,12].

Most of CIOQ switches use a crossbar switching fabric with a centralized
scheduler. While it is theoretically possible to build crossbar schedulers that give
100% throughput [23] or rate and delay guarantees [8,14] they are considered
too complex to be practical. No commercial backbone router today can make
hard guarantees on throughput, rate or delay. In practice, commercial systems
use heuristics such as iSLIP [22] with insufficient speedup to give guarantees.
Perhaps the most promising way of obtaining guaranteed performance has been
to use maximal matching with a speedup of two in the switch fabric [11]. The
parallel matching process can be characterized by three phases: request, grant,
and accept. Therefore, the resolution time would be the time spent in each of the
phases plus the transmission delays for the exchange of request, grant, and accept

172 A. Kesselman, K. Kogan, and M. Segal

information. Unfortunately, schedulers based on matching do not perform well
with the increase of the switch speed due to the communication and arbitration
complexity.

A solution to minimize the scheduling overhead is to use buffers in the cross-
points of the crossbar fabric, or buffered crossbar. The adoption of internal
buffers drastically improves the overall performance of the switch. The main
benefit of the buffered crossbar switch architecture is that each input and out-
put port can make efficient scheduling decisions independently and in parallel,
eliminating the need for a centralized scheduler. As a result, the scheduler for a
buffered crossbar is much simpler than that for a traditional unbuffered crossbar
[9]. Note that the number of buffers is proportional to the number of crosspoints,
that is O(N2). However, the crosspoint buffers are typically very small.

Buffered crossbar switches recently received significant research attention. Ja-
vidi et al. [15] demonstrated that a buffered crossbar switch with no speedup can
achieve 100% throughput under a uniform traffic. Nabeshima [24] introduced
buffered crossbar switches with VOQs and proposed a scheme based on the old-
est cell first (OCF) arbitration at the input as well as the crosspoint buffers.
Chuang et al. [9] described a set of scheduling algorithms to provide throughput,
rate and delay guarantees with a moderate speedup of 2 and 3.

In the previous research, the scheduling policies for the buffered crossbar
switch architecture were analyzed by means of simulations that assumed par-
ticular traffic distributions. However, Internet traffic is difficult to model and
it does not seem to follow the traditional Poisson arrival model [26,27]. In this
work we do not assume any specific traffic model and rather analyze our policies
against arbitrary traffic using competitive analysis [25,6], which provides a uni-
form throughput guarantee for all traffic patterns. In competitive analysis, the
online policy A is compared to the optimal clairvoyant offline policy OPT that
knows the entire input sequence in advance. The competitive ratio of a policy A
is the maximum, over all sequences of packet arrivals σ, of the ratio between the
the total value of packets sent by OPT out of σ, and that of A.

1.1 Our Results

We consider a buffered crossbar switch with crosspoint buffers of arbitrary ca-
pacity. The switch policy controlling the switch consists of two components: a
buffer management policy that controls admission to buffers, and a scheduling
policy that is responsible for the transfer of packets from input to crosspoint
buffers and from crosspoint buffers to output buffers. The goal of the switch
policy is to maximize the weighted throughput of the switch. When all packets
have a unit value, this corresponds to the number of packets sent out of switch.
When packets have variable values, this corresponds to the total value of the
sent packets.

First we study the case of unit value packets, which abstracts the Best Effort
model [10]. We present a simple greedy policy that is 4-competitive. Then we
study Priority Queueing (PQ) buffers, where packets of the highest priority must
be forwarded first. We assume that each packet has an intrinsic value designating

Best Effort and PQ Policies for Buffered Crossbar Switches 173

its priority, which abstracts the Diffirentiated Services (DiffServ) model [7]. We
propose a preemptive greedy switch policy that achieves a competitive ratio of
18. Our results hold for any value of the speedup. Moreover, the proposed policies
have low implementation overhead and can operate at high speeds. We are not
aware of any previous work on the competitive analysis of buffered crossbar
switches.

1.2 Related Work

Kesselman et al. [17] studied preemptive policies for FIFO buffers in OQ switches
and introduce a new bounded-delay model. Competitive analysis of preemptive
and non-preemptive scheduling policies for shared memory OQ switches was
given by Hahne et al. [13] and Kesselman and Mansour[19], respectively. Kessel-
man et al. [18] studied the throughput of local buffer management policies in a
system of merge buffers.

Azar and Richter [4] presented a 4-competitive algorithm for a weighted multi-
queue switch problem with FIFO buffers. An improved 3-competitive algorithm
was given by Azar and Richter [5]. Albers and Schmidt [2] proposed a deter-
ministic 1.89-competitive algorithm for the case of unit-value packets. Azar and
Litichevskey [3] derived a 1.58-competitive algorithm for switches with large
buffers. Recently, Albers and Jacobs [1] gave an experimental study of new and
known online packet buffering algorithms.

Kesselman and Rosén [20] studied CIOQ switches with FIFO buffers. For
the case of packets with unit values, they presented a switch policy that is
3-competitive for any speedup. For the case of packets with variable values,
they proposed two switch policies achieving a competitive ratio of 4S and
8 min(k, 2 logβ), where S is the speedup of the switch, k is the number of dis-
tinct packet values and β is the ratio between the largest and the smallest value.
Azar and Richter [5] obtained a 8-competitive policy for CIOQ switches with
FIFO buffers for the latter case. Kesselman and Rosén [21] considered the case
of CIOQ switches with PQ buffers and proposed a policy that is 6-competitive
for any speedup.

1.3 Paper Organization

The rest of the paper is organized as follows. The model description appears in
Section 2. Unit and variable value packets are analyzed in Section 3 and Section
4, respectively. We conclude with Section 5.

2 Model Description

We consider an N × N buffered crossbar switch (see Fig 1). Packets, of equal
size, arrive at input ports, and each packet is labeled with the output port on
which it has to leave the switch. For a packet p, we denote by V (p) its value.
The switch has three levels of buffering: each input i maintains for each output

174 A. Kesselman, K. Kogan, and M. Segal

Fig. 1. An example of a buffered crossbar switch

j a separate queue V OQi,j of capacity BIi,j ; each crosspoint corresponding to
input i and output j maintains a queue CQi,j of capacity BCi,j ; each output j
maintains a queue OQj of capacity BOj . We denote the length of queue q by
|q|. Sometimes we use ”*” to refer to all queue indices in range [1, N].

The buffering model defines in which order packets should be fetched out of the
buffer. We consider the First-In-First-Out (FIFO) model under which packets
must leave the buffer in the order of their arrivals and the Priority Queuing (PQ)
model under which packets of the highest value (priority) must be forwarded first.

We divide time into discrete steps, where a step is the arrival time between
two packets at an input port. That is, during each time step one packet can
arrive at each input port and one packet can be sent out of each output port.

We divide each time step into three phases. The first phase is the transmission
phase during which the first packet from each non-empty output queue is sent
on the output link. The second phase is the arrival phase. During ”arrival”
phase at most one packet arrives at each input port. The third phase is the
scheduling phase, which consists of so called input and output subphases. During
the input scheduling subphase each input port may transfer one packet from a
virtual output queue to the corresponding crosspoint queue. During the output
scheduling subphase each output port can fetch one packet from a crosspoint
queue. Notice that a packet arriving at the input port i and destined to the
output port j passes through three buffers before it leaves the switch, namely
V OQi,j , CQi,j and OQj .

In a switch with a speedup of S, up to S packets can be removed from any
input port and up to S packets can be added to each output port during the
scheduling phase. This is done in (up to) S scheduling cycles, where each cycle
comprises input and output scheduling subphases.

Suppose that the switch is managed by a policy A. We estimate the effective-
ness of a switch policy by means of competitive analysis. In competitive analysis,
the online policy is compared to the optimal offline policy OPT , which knows

Best Effort and PQ Policies for Buffered Crossbar Switches 175

the entire input sequence in advance. The aim of a switch policy is to maximize
the total value of the packets sent out of the switch. Let σ be a sequence of
packets arriving at the input ports of the switch. We denote by V A(σ) the total
value of packets transmitted by A under the input sequence σ. The competitive
ratio is defined as follows.

Definition 1. An online switch policy A is said to be c-competitive if for ev-
ery input sequence of packets σ , V OPT (σ) = cV A(σ), where c is a constant
independent of σ.

3 Unit Value Packets

In this section we consider the case of unit value packets. We define a simple
Gready Unit Switch Policy (see Figure 2). Note that GU never drops accepted
packets implementing back pressure at all buffering levels inside the switch.

Greedy Unit Switch Policy (GU)

Transmission Phase : Transmit the first packet from each non-empty output
queue.

Arrival Phase : Accept the arriving packet p if there is free space in the buffer.
Drop p in case the buffer is full.

Scheduling Phase :
Input Subphase: for each input i choose an arbitrary head-of-line packet p if

any in V OQGU
i,j such that CQGU

i,j is not full and transfer it to CQGU
i,j .

Output Subphase: for each output j if OQGU
j is not full choose an arbitrary

head-of-line packet p if any in CQGU
i,j and transfer it to OQGU

j .

Fig. 2. GU Switch Policy for Unit Size and Value Packets

We show that the GU policy is 4-competitive for any speedup. To analyze the
throughput of the GU policy we introduce some helpful definitions. The next
definition concerns packets that OPT may deliver during a time step while GU
does not.

Definition 2. For a given switch policy A, a packet sent by OPT from output
port j at time t is said to be extra if A does not transmit a packet from output
port j at this time.

Next we define a wider class of so called potential extra packets that encompass
extra packets.

Definition 3. For a given policy A, a packet p located at queue Q of OPT is
called potential extra if the number of packets in Q preceding p with respect to
the FIFO order is greater than the length of the corresponding queue of A.

176 A. Kesselman, K. Kogan, and M. Segal

Clearly, each extra packet should eventually become potential extra prior to
transmission. We will map every potential extra packet to a packet sent by GU ,
in such a way that each GU packet is mapped to at most three potential extra
packets. This mapping technique was first introduced in [13]. We need some
auxiliary claims. First we will show that no new potential extra packets appear
during the transmission phase.

Claim. No new potential extra packets appear during a transmission phase.

Proof. Consider an OPT output queue OQOPT
j . If OQOPT

j is empty at the be-
ginning of the transmission phase, then we are done. Otherwise, OPT transmits
a packet out of OQOPT

j and thus the difference between |OQOPT
j | and |OQGU

j |
cannot increase.

Now we will show that the number of potential extra packets does not increase
during the arrival phase as well.

Claim. The number of potential extra packets does not increase during an arrival
phase.

Proof. Consider a virtual output queue V OQOPT
i,j . We argue that the difference

between |V OQOPT
i,j | and |V OQGU

i,j | cannot increase unless V OQGU
i,j is full. It

follows from the fact that GU greedily accepts all arriving packets if the input
buffer is not full. Obviously, V OQOPT

i,j may contain no potential extra packets
if V OQGU

i,j is full.

In the following claim we bound the number of new potential extra packets that
may appear during an input scheduling subphase.

Claim. Consider an input scheduling subphase. For any input port i, the num-
ber of new potential extra packets in the virtual output queues V OQOPT

i,∗ and
crosspoint queues CQOPT

i,∗ that appear at the end of this subphase is at most
two.

Proof. New potential extra packets may appear only in V OQOPT
i,j if GU transfers

a packet from V OQGU
i,j and in CQOPT

i,k if OPT transfers a packet to this queue
provided that j �= k. Thus, at most two new potential extra packets may occur.

The next claim limits the number of new potential extra packets that may occur
during an output scheduling subphase.

Claim. Consider an output scheduling subphase. For any output port j, the
number of new potential extra packets in the crosspoint queues CQOPT

∗,j and
output queue OQOPT

j that appear at the end of this subphase is at most one.

Proof. Consider an output scheduling subphase tos. We have that one new po-
tential extra packet may appear in CQOPT

i,j if GU transfers a packet from this
queue. Notice that if a new potential extra packet appears in OQOPT

j , then

Best Effort and PQ Policies for Buffered Crossbar Switches 177

all crossbar queues CQGU
∗,j must have been empty at the beginning of tos. In

this case, the potential extra packet appearing in OQOPT
j must have already

been a potential extra packet in a queue CQOPT
i,j at the beginning of tos. That

establishes the claim.

The mapping routine presented in Figure 3 maps all potential extra packets to
the packets sent by GU (we will show in the sequel that the routine is feasible).
The routine runs at each (sub)phase, and adds some mappings according to the
actions of GU and OPT .

Mapping Routine:

– Step 1: Arrival Phase. For each V OQOPT
i,j , if OPT accepts a packet that be-

comes potential extra, this packet replaces in the mapping the preceding packet
in V OQOPT

i,j that ceases to be potential extra.
– Step 2: Scheduling Phase. (The next sub-steps are repeated S times for each

scheduling cycle.)
• Sub-Step 2.1: Input Scheduling Subphase. For each input port i, map new

potential extra packet(s) in the virtual output queues V OQOPT
i,∗ and cross-

point queues CQOPT
i,∗ to the packet transferred by GU from input port

i.
• Sub-Step 2.2: Output Scheduling Subphase. For each output port j, map

new potential extra packet in the crosspoint queues CQOPT
∗,j and output

queue OQOPT
j to the packet transferred by GU to output port j.

Fig. 3. Mapping Routine for the GU policy

We make the following observation concerning potential extra packets.

Observation 1. All potential extra packets are mapped by the mapping routine.

The observation is due to the fact that the routine runs during all but the
transmission phase. Notice that by Claim 3, no new potential extra packets
appear during a transmission phase. The next lemma shows that the mapping
routine is feasible and at most three potential extra packets are mapped to a
packet transmitted out of the switch by GU .

Lemma 1. The mapping routine is feasible and no GU packet is mapped more
than three times by the mapping routine prior to transmission out of the switch
for any value of the speedup S.

Proof. According to Claim 3, the number of potential extra packets in the virtual
output queues does not increase during the arrival phase. Therefore, if a new
potential extra packet appears in V OQOPT

i,j , it must be the case that another
packet in V OQOPT

i,j ceases to be potential extra at the end of the arrival phase.
Hence, Step 1 of the mapping routine is feasible and no new mappings are added
to GU packets.

178 A. Kesselman, K. Kogan, and M. Segal

Claim 3 implies that the number of new potential extra packets in the virtual
output queues and crosspoint queues corresponding to an input port that appear
at the end of the input scheduling subphase is at most two. We argue that no
new potential extra packet may appear if GU does not transmit a packet from
this input port. In this case, the potential extra packet appearing in a crosspoint
queue of OPT must have already been potential extra at the beginning of the
input scheduling subphase under consideration. Thus, Step 2.1 of the mapping
routine is feasible and no GU packet is mapped more than twice.

By Claim 3, the number of new potential extra packets in the crosspoint
queues and output queue corresponding to an output port that appear at the
end of the output scheduling subphase is at most one. We claim that no new
potential extra packet may appear if GU does not transfer a packet to this output
port. In this case, the potential extra packet appearing in the output queue of
OPT must have already been potential extra at the beginning of the output
scheduling subphase under consideration. Therefore, Step 2.2 of the mapping
routine is feasible and no GU packet is mapped more than once.

Note the GU does not drop packets that have been admitted to the switch.
Therefore, the mapping is persistent and all mapped GU packets are eventually
sent out of the switch. Furthermore, no GU packet is mapped more than three
times in total.

Now we will show that GU achieves a competitive ratio of 4.

Theorem 2. The competitive ratio of GU is at most 4 for any speedup value.

Proof. Fix an input sequence σ. Evidently, the number of packets sent by OPT
is bounded by the number of packets sent by GU plus the number of extra
packets. Observe that every extra packet at first becomes a potential extra packet
prior to transmission. By Lemma 1, the number of extra packets is bounded by
three times the number of packets transmitted by GU . In this way we obtain,
V OPT (σ) ≤ 4V GU (σ).

4 Variable Value Packets

In this section we study the case of variable value packets under the Priority
Queueing buffering model. Remember that packets of the highest value have a
strict priority over packets with lower values and are always forwarded first. The
goal of the switch policy is to maximize the total value of packets that cross the
switch.

Next we define the Preemptive Greedy Variable Switch Policy (see Figure 4).
The rationale behind PGV is that it preempts packets inside the switch only to
serve significantly more valuable packets (twice the value of the evicted packet).
Although the Priority Queueing mechanism may violate the global FIFO order,
it still maintains the FIFO order within each individual flow consisting of packets
with the same value.

We will show that PGV achieves a competitive ratio of 18 for any speedup. In
order to show the competitive ratio of PGV we will assign value to the packets

Best Effort and PQ Policies for Buffered Crossbar Switches 179

Preemptive Greedy Variable Switch Policy (PGV)

Transmission Phase : For each non-empty output queue, transmit the first
packet in the FIFO order with the largest value.

Arrival Phase : Accept an arriving packet p if there is a free space in the corre-
sponding virtual output queue V OQPGV

i,j . Drop p if V OQPGV
i,j is full and V (p)

is less than the minimal value among the packets currently in V OQPGV
i,j . Oth-

erwise, drop from V OQPGV
i,j a packet p′ with the minimal value and accept p.

We say that p preempts p′.
Scheduling Phase :

Input Subphase: For each input port i do the following. For each virtual output
queue V OQPGV

i,j , choose the packet p that is the first packet in the FIFO
order among the packets with the largest value if any. If CQPGV

i,j is not full,
mark p as eligible. Otherwise, consider a packet p′ with the smallest value
in CQPGV

i,j . If V (p) ≥ 2V (p′), then mark p as eligible (p will preempt p′

if selected for transmission). Among all the eligible packets in V OQPGV
i,∗ ,

select an arbitrary packet p′′ with the largest value and transfer p′′ to
the corresponding crosspoint queue preempting a packet with the smallest
value from that queue if necessary.

Output Subphase: For each output port j do the following. For each crosspoint
queue CQPGV

i,j , choose the packet that is the first packet in the FIFO order
among the packets with the largest value if any. Among all chosen packets
in CQPGV

∗,j , select an arbitrary packet p with the largest value. if OQPGV
j

is not full, then transfer p to OQPGV
j . Otherwise, consider a packet p′

with the smallest value in OQPGV
j . If V (p) ≥ 2V (p′), then preempt p′ and

transfer p to OQPGV
j .

Fig. 4. PGV Switch Policy for Priority Queuing Model

sent by PGV so that no packet is assigned more than 18 times its value and
then show that the value assigned is indeed at least V OPT (σ). Our analysis is
done along the lines of the work in [21], which studies Priority Queuing (PQ)
buffers for CIOQ switches.

For the analysis, we assume that OPT maintains FIFO order and never
preempts packets. Notice that any schedule of OPT can be transformed into a
non-preemptive FIFO schedule of the same value.

Lemma 2. For any finite sequence σ, the value of OPT in the non-FIFO model
equals the value of OPT in the FIFO model.

The proof of Lemma 2 is similar to that for CIOQ switches [20].
The assignment routine presented on Figure 5 specifies how to assign value

to the packets sent by PGV . Observe that the routine assigns some value only
to packets that are scheduled out of the virtual output queues and crosspoint
queues. Furthermore, if a packet is preempted, then the total value assigned to
it is re-assigned to the packet that preempts it.

Now we demonstrate that the routine is feasible and establish an upper bound
on the value assigned to a single PGV packet.

180 A. Kesselman, K. Kogan, and M. Segal

– Step 1 Assign to each packet scheduled by PGV during the input scheduling
subphases of ts once its own value; assign to each packet scheduled by PGV
during the output scheduling subphases of ts twice its own value.

For each input port i, let p′ be the packet scheduled by OPT from V OQOPT
i,j if

any during the input scheduling subphase of ts. Let p be the first packet with the
largest value in V OQPGV

i,j if any or a dummy packet with zero value otherwise.

– Step 2 If V (p′) ≤ V (p) and p is not eligible for transmission, then proceed as
follows. Consider the beginning of the output scheduling subphase that takes
place during a scheduling cycle t′

s when OPT schedules p′ from CQOPT
i,j and

let p′′ be the first packet with the largest value in CQPGV
i,j if any or a dummy

packet with zero value otherwise.
• Sub-Step 2.1 If V (p′′) ≥ V (p)/2 and p′′ is not eligible for transmission at

the beginning of the output scheduling subphase of t′
s, let p̂ be the packet

that will be sent out of OQPGV
j at the same time at which OPT will send

p′ from OQOPT
j (we will later show that p̂ exists and its value is at least

V (p′)/4)). Assign the value of p′ to p̂.
• Sub-Step 2.2 If V (p′′) < V (p)/2, consider the set of packets with value at

least V (p′)/2 that are scheduled by PGV from CQPGV
i,j prior to t′

s. Assign
the value of V (p′) to a packet in this set that has not previously been
assigned any value by Sub-Step 2.2 (we will later show that such a packet
exists).

– Step 3 If V (p′) > V (p) then proceed as follows:
• Sub-Step 3.1 If p′ was already scheduled by PGV , then assign the value

of V (p′) to p′.
• Sub-Step 3.2 Otherwise, consider the set of packets with value at least

V (p′) that are scheduled by PGV from V OQPGV
i,j prior to the scheduling

cycle ts. Assign the value of V (p′) to a packet in this set that is not in
V OQOPT

i,j at the beginning of this subphase, and has not previously been
assigned any value by either Sub-Step 3.1 or Sub-Step 3.2 (we will later
show that such a packet exists).

– Step 4 If a packet q preempts a packet q′ at a crosspoint or output queue of
PGV , re-assign to q the value that was or will be assigned to q′.

Fig. 5. Assignment Routine for PGV policy - executed for every scheduling cycle ts

Lemma 3. The assignment routine is feasible and the value of each packet
scheduled by OPT is assigned to a PGV packet so that no PGV packet is as-
signed more than 18 times its value. The result holds for any value of the speedup.

Proof. First we show that the assignment routine as defined is feasible. Step
1, Sub-Step 3.1 and Step 4 are trivially feasible. Consider Sub-Steps 2.1, 2.2
and 3.2.

Sub-Step 2.1. Let p′′ be the first packet with the largest value in CQPGV
i,j

at the beginning of the output scheduling subphase of t′s and suppose that p′′ is
not eligible for transmission. If V (p′′) ≥ V (p)/2 then, by the definition of PGV ,
the minimal value among the packets in OQPGV

j is at least V (p′′)/2 ≤ V (p)/4

Best Effort and PQ Policies for Buffered Crossbar Switches 181

and OQPGV
j is full. Thus, during the following BOj time steps PGV will send

packets with value of at least V (p′/4) out of OQPGV
j . The packet p′ scheduled by

OPT from V OQOPT
i,j will be sent from OQOPT

j in one of these time steps (recall
that by our assumption OPT maintains FIFO order). Since V (p′) ≤ V (p), we
have that the packet p̂ of PGV as specified in Step 2.1 indeed exists, and its
value is at least V (p′)/4.

Sub-Step 2.2. If V (p′′) < V (p)/2, then evidently PGV scheduled at least
BCi,j packets with value at least V (p′)/2 out of CQPGV

i,j during [ts, t′s). By the
construction, at most BCi,j − 1 of these packets have been assigned some value
by Sub-Step 2.2. That is due to the fact that p′ is still present in CQOPT

i,j at the
beginning of the output scheduling subphase of t′s and by our assumption OPT
maintains FIFO order. Henceforth, one of these packets must be available for
assignment, i.e., it has not been assigned any value by Sub-Step 2.2 prior to t′s.

Sub-Step 3.2. First note that if this case applies, then the packet p′ (sched-
uled by OPT from V OQOPT

i,j during the input scheduling subphase of ts) is
dropped by PGV from V OQPGV

i,j during the arrival phase ta < ts. Let t′a ≥ ta
be the last arrival phase before ts at which a packet of value at least V (p′) is
dropped from V OQPGV

i,j . Since the greedy buffer management policy is applied
to V OQPGV

i,j , it contains BIi,j packets with value of at least V (p′) at the end
of t′a. Let P be the set of these packets. Note that p′ /∈ P because it has been
already dropped by PGV by this time. We have that in [t′a, ts), PGV has ac-
tually scheduled all packets from P , since in [t′a, ts) no packet of value at least
V (p′) has been dropped, and at time ts all packets in V OQPGV

i,j have value less
than V (p′). We show that at least one packet from P is available for assignment,
i.e., it has not been assigned any value by Step 3 prior to ts and is not currently
present in V OQOPT

i,j . Let x be the number of packets from P that are present
in V OQOPT

i,j at the end of the scheduling cycle ts. By the construction, these
x packets are unavailable for assignment. From the rest of the packets in P , a
packet is considered available for assignment unless it has been already assigned
a value by Step 3. Observe that a packet from P can be assigned a value by
Step 3 only during [t′a, ts) (when it is scheduled). We now argue that OPT has
scheduled at most BIi,j − 1 − x packets out of V OQi,j in [t′a, ts), and thus P
contains at least one available packet. To see this observe that the x packets
from P that are present in V OQOPT

i,j at the beginning of the scheduling cycle ts,
were already present in V OQOPT

i,j at the end of the arrival phase t′a. The same
applies to the packet p′ (recall that p′ /∈ P). Since OPT maintains FIFO order,
all the packets that OPT scheduled out of V OQOPT

i,j in [t′a, ts) were also present
in V OQOPT

i,j at the end of the arrival phase t′a. Therefore, the number of such
packets is at most BIi,j −1−x (recall that the capacity of V OQi,j is BIi,j). We
obtain that at least one packet from P is available for assignment at Sub-Step
3.2 since |P | = BIi,j , x packets are unavailable for assignment because they are
present in V OQOPT

i,j and at most BIi,j − 1 − x packets are unavailable because
they have been already assigned some value by Step 3.

We show that the value of each packet scheduled by OPT is assigned to a
PGV packet. Note that the assignment routine handles all packets scheduled

182 A. Kesselman, K. Kogan, and M. Segal

by OPT out of the virtual output queues. The only two cases left uncovered
by Step 2 and Step 3 of the assignment routine are (i) V (p′) ≤ V (p) and p is
eligible for transmission and (ii) V (p′) ≤ V (p), p is not eligible for transmission,
V (p′′) ≥ V (p)/2 and p′′ is eligible for transmission. We show that these cases
are covered by Step 1: for the case (i), the value of p′ is assigned during the
input scheduling subphase when p is scheduled since V (p) ≥ V (p′); for the case
(ii), the value of p′ is assigned during the output scheduling subphase when p′′

is scheduled since V (p′′) ≥ V (p)/2. If a PGV packet is preempted, the value
assigned to it is re-assigned to the preempting packet by Step 4.

Finally, we demonstrate that no packet is assigned more than 18 times its own
value. Consider a packet p sent by PGV . Observe that p can be assigned at most
3 times its own value by Step 1 and at most 6 times its own value by Step 2. By
the specification of Sub-Step 3.2, it does not assign any value to p if it is assigned
a value by either Sub-Step 3.1 or Sub-Step 3.2. We also show that Sub-Step 3.1
does not assign any value to p if it is assigned a value by Sub-Step 3.2. That is
due to the fact that by the specification of Sub-Step 3.2, if p is assigned a value
by this sub-step during ts, then p is not present in the input buffer of OPT at
this time. Therefore, Sub-Step 3.1 cannot be later applied to it. We obtain that
p can be assigned at most once its own value by Step 3. Hence, a packet that
does not perform preemptions can be assigned at most 10 times its value.

Next we analyze Step 4. Note that this assignment is done only to packets
that are actually transmitted out of the switch (i.e. they are not preempted).
We say that p transitively preempts a packet q if either p directly preempts q or
p preempts another packet that transitively preempts q. Firstly, p can preempt
another packet q′ in the crosspoint queue such that V (q′) ≤ V (p)/2. Observe
that any preempted packet in a crosspoint queue is assigned at most once its
own value by Step 1, once its own value by Step 3 and no value by Step 2. Hence,
the total value that can be assigned to p by Step 4 due to transitively preempted
packets when p preempts q′ is bounded by twice its own value. Secondly, p can
preempt another packet q′′ in the output queue such that V (q′′) ≤ V (p)/2.
Observe that any preempted packet in an output queue is assigned at most 3
times its own value by Step 1, twice its own value by Step 2, once its own value
by Step 3, and twice its own value by Step 4. Thus, the total value that can be
assigned to p by Step 4 due to transitively preempted packets when p preempts
q′′ is bounded by 8 times its own value. Therefore, in total no PGV packet is
assigned more than 18 times its own value.

Now we are ready to prove the main theorem, which follows from Lemma 3.

Theorem 3. The competitive ratio of the PGV policy is at most 18 for any
speedup.

5 Conclusions

As switch speeds constantly grow, centralized switch scheduling algorithms be-
come the main performance bottleneck. In this paper we consider competitive

Best Effort and PQ Policies for Buffered Crossbar Switches 183

switch policies for buffered crossbars switches with PQ buffers. The major advan-
tage of the buffered crossbar switch architecture is that the need for centralized
arbitration is eliminated and scheduling decisions can be made independently
by the input and output ports.

Our main result is a 18-competitive preemptive greedy switch policy for the
general case of unit size and variable value packets and arbitrary value of the
switch fabric speedup. We also propose a simple greedy switch policy that
achieves a competitive ratio of 4 for any value of speedup in the case of unit
size and value packets. As far as we know, these are the first results on compet-
itive analysis for the buffered crossbar switch architecture. We believe that this
work advances the design of practical switch policies with provable worst-case
performance guarantees for state-of-the-art switch architectures.

References

1. Albers, S., Jacobs, T.: An experimental study of new and known online packet
buffering algorithms. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 754–765. Springer, Heidelberg (2007)

2. Albers, S., Schmidt, M.: On the Performance of Greedy Algorithms in Packet
Buffering. SIAM Journal on Computing 35(2), 278–304 (2005)

3. Azar, Y., Litichevskey, M.: Maximizing throughput in multi-queue switches. Algo-
rithmica 45(1), 69–90 (2006)

4. Azar, Y., Richter, Y.: Management of Multi-Queue Switches in QoS Networks. In:
Algorithmica, vol. 43(1-2), pp. 81–96 (2005)

5. Azar, Y., Richter, Y.: An improved algorithm for CIOQ switches. ACM Transac-
tions on Algorithms 2(2), 282–295 (2006)

6. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

7. Black, D., Blake, S., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An Architecture
for Differentiated Services, Internet RFC 2475 (December 1998)

8. Chuang, S.T., Goel, A., McKeown, N., Prabhakar, B.: Matching Output Queueing
with a Combined Input Output Queued Switch. IEEE Journal on Selected Areas
in Communications 17, 1030–1039 (1999)

9. Chuang, S.T., Iyer, S., McKeown, N.: Practical Algorithms for Performance Guar-
antees in Buffered Crossbars. In: Proc. INFOCOM 2005, vol. 2, pp. 981–991 (2005)

10. Clark, D., Fang, W.: Explicit Allocation of Best Effort Packet Delivery Service.
IEEE/ACM Trans. on Networking 6(4), 362–373 (1998)

11. Dai, J., Prabhakar, B.: The throughput of data switches with and without speedup.
In: Proc. IEEE INFOCOM 2000, March 2000, vol. 2, pp. 556–564 (2000)

12. Giaccone, P., Leonardi, E., Prabhakar, B., Shah, D.: Delay Performance of High-
speed Packet Switches with Low Speedup. In: Proc. IEEE GLOBECOM 2002,
November 2002, vol. 3, pp. 2629–2633 (2002)

13. Hahne, E.L., Kesselman, A., Mansour, Y.: Competitive Buffer Management for
Shared-Memory Switches. In: Proc. SPAA, July 2001, pp. 53–58 (2001)

14. Iyer, S., Zhang, R., McKeown, N.: Routers with a Single Stage of Buffering. ACM
SIGCOMM 3(4), 251–264 (2002)

15. Javidi, T., Magill, R., Hrabik, T.: A High Throughput Scheduling Algorithm for
a Buffered Crossbar Switch Fabric. In: Proc. IEEE International Conference on
Communications, vol. 5, pp. 1586–1591 (2001)

184 A. Kesselman, K. Kogan, and M. Segal

16. Karol, M., Hluchyj, M., Morgan, S.: Input versus Output Queuing an a Space
Division Switch. IEEE Trans. Communications 35(12), 1347–1356 (1987)

17. Kesselmanm, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., Sviri-
denko, M.: Buffer Overflow Management in QoS Switches. SIAM Journal on Com-
puting 33(3), 563–583 (2004)

18. Kesselmanm, A., Lotker, Z., Mansour, Y., Patt-Shamir, B.: Buffer Overflows of
Merging Streams. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832,
pp. 349–360. Springer, Heidelberg (2003)

19. Kesselman, A., Mansour, Y.: Harmonic Buffer Management Policy for Shared
Memory Switches. Theoretical Computer Science, Special Issue on Online Algo-
rithms, In Memoriam: Steve Seiden 324(2-3), 161–182 (2004)

20. Kesselman, A., Rosén, A.: Scheduling Policies for CIOQ Switches. Journal of Al-
gorithms 60(1), 60–83 (2006)

21. Kesselman, A., Rosén, A.: Controlling CIOQ Switches with Priority Queuing and
in Multistage Interconnection Networks. Journal of Interconnection Networks (to
appear)

22. McKeown, N.: iSLIP: A Scheduling Algorithm for Input-Queued Switches. IEEE
Transactions on Networking 7(2), 188–201 (1999)

23. McKeown, N., Mekkittikul, A., Anantharam, V., Walrand, J.: Achieving 100%
Throughput in an Input-Queued Switch. IEEE Transactions on Communica-
tions 47(8), 1260–1267 (1999)

24. Nabeshima, M.: Performance evaluation of combined input-and crosspoint- queued
switch. IEICE Trans. Commun. E83-B(3), 737–741 (2000)

25. Sleator, D., Tarjan, R.: Amortized Efficiency of List Update and Paging Rules.
Communications of the ACM 28(2), 202–208 (1985)

26. Paxson, V., Floyd, S.: Wide Area Traffic: The Failure of Poisson Modeling.
IEEE/ACM Transactions on Networking 3(3), 226–244 (1995)

27. Veres, A., Boda, M.: The Chaotic Nature of TCP Congestion Control. In: Proc.
INFOCOM, March 2000, vol. 3, pp. 1715–1723 (2000)

Word of Mouth:

Rumor Dissemination in Social Networks

Jan Kostka, Yvonne Anne Oswald, and Roger Wattenhofer

Computer Engineering and Networks Laboratory,

ETH Zurich, Switzerland

{kostkaja, oswald, wattenhofer}@tik.ee.ethz.ch

Abstract. In this paper we examine the diffusion of competing rumors

in social networks. Two players select a disjoint subset of nodes as initia-

tors of the rumor propagation, seeking to maximize the number of per-

suaded nodes. We use concepts of game theory and location theory and

model the selection of starting nodes for the rumors as a strategic game.

We show that computing the optimal strategy for both the first and the

second player is NP-complete, even in a most restricted model. Moreover

we prove that determining an approximate solution for the first player

is NP-complete as well. We analyze several heuristics and show that—

counter-intuitively—being the first to decide is not always an advantage,

namely there exist networks where the second player can convince more

nodes than the first, regardless of the first player’s decision.

1 Introduction

Rumors can spread astoundingly fast through social networks. Traditionally this
happens by word of mouth, but with the emergence of the Internet and its
possibilities new ways of rumor propagation are available. People write email, use
instant messengers or publish their thoughts in a blog. Many factors influence
the dissemination of rumors. It is especially important where in a network a
rumor is initiated and how convincing it is. Furthermore the underlying network
structure decides how fast the information can spread and how many people are
reached. More generally, we can speak of diffusion of information in networks.
The analysis of these diffusion processes can be useful for viral marketing, e.g.
to target a few influential people to initiate marketing campaigns. A company
may wish to distribute the rumor of a new product via the most influential
individuals in popular social networks such as MySpace. A second company
might want to introduce a competing product and has hence to select where to
seed the information to be disseminated. In these scenarios it is of great interest
what the expected number of persuaded nodes is, under the assumption that
each competitor has a fixed budget available for its campaign.

The aim of this paper is to gain insights into the complexity of a model that
captures the dissemination of competing rumors as a game where a number

A. Shvartsman and P. Felber (Eds.): SIROCCO 2008, LNCS 5058, pp. 185–196, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

186 J. Kostka, Y.A. Oswald, and R. Wattenhofer

of players can choose different starting nodes in a graph to spread messages.
The payoff of each player is the number of nodes that are convinced by the
corresponding rumor. We focus on one crucial aspect of such a rumor game:
the choice of a set of nodes that is particularly suitable for initiating the piece
of information. We show that even for the most basic model, selecting these
starting nodes is NP-hard for both the first and the second player. We analyze
tree and d-dimensional grid topologies as well as general graphs with adapted
concepts from facility location theory. Moreover, we examine heuristics for the
selection of the seed nodes and demonstrate their weaknesses. We prove that
contrary to our intuition there exist graphs where the first player cannot win
the rumor game, i.e., the second player is always able to convince more nodes
than the first player.

2 Related Work

Recently, viral marketing experienced much encouragement by studies [12] stating
that traditional marketing techniques do no longer yield the desired effect. Fur-
thermore [12,15,16] provide evidence that people do influence each other’s decision
to a considerable extent. The low cost of disseminating information via new com-
munication channels on the Internet further increases the appeal of viral market-
ing campaigns. Thereupon algorithmic questions related to the spread of informa-
tion have come under scrutiny. Richardson and Domingos [5] as well as Kleinberg
et al. [13] were among the first to study the optimization problem of selecting the
most influential nodes in a social network. They assume that an initial set of people
can be convinced of some piece of information, e.g., the quality of a new product
or a rumor. If these people later influence their friends’ decisions recursively, a cas-
cading effect takes place and the information is distributed widely in a network.
They define the Influence Maximization Problem, which asks to find a k-node set
for which the expected number of convinced nodes at the end of the diffusion pro-
cess is maximized. The authors introduced various propagation models such as the
linear threshold model and the independent cascade model. Moreover, they show
that determining an optimal seeding set is NP-hard, and that a natural greedy hill-
climbing strategy yields provable approximation guarantees. This line of research
was extended by introducing a second competitor for the most far-ranging influ-
ence. Carnes et al. [3] study the strategies of a company that wishes to invade an
existing market and persuade people to buy their product. This turns the problem
into a Stackelberg game [23] where in the first player (leader) chooses a strategy
in the first stage, which takes into account the likely reaction of the second players
(followers). In the second stage, the followers choose their own strategies having
observed the Stackelberg leader decision i.e., they react to the leader’s strategy.
Carnes et al. use models similar to the ones proposed in [13] and show that the
second player faces an NP-hard problem if aiming at selecting an optimal strat-
egy. Furthermore, the authors prove that a greedy hill-climbing algorithm leads

Word of Mouth: Rumor Dissemination in Social Networks 187

to a (1− 1/e− ε)-approximation. Around the same time, Bharathi et al. [1] intro-
duce roughly the same model for competing rumors and they also show that there
exists an efficient approximation algorithm for the second player. Moreover they
present an FPTAS for the single player problem on trees.

Whereas the application of information dissemination to viral marketing cam-
paigns is relatively new, the classic subjects of Competitive Location Theory and
Voting Theory provide concepts that are related and prove very useful in this
paper. Location theory studies the question where to place facilities in order
to minimize the distance to their future users. One of the earliest results stems
from Hotelling [11], where he examines a competitive location problem in one di-
mension. He analyzes the establishment of ice-cream shops along a beach where
customers buy their ice-cream at the nearest shop. Voronoi Games [4] study the
same problem in two dimensions. In these games the location set is continuous,
and the consumers are assumed to be uniformly distributed. Contrary to these
assumptions the dissemination of information depends on the underlying net-
work structure, i.e., there is a discrete set of possible “locations”. Closest related
to the spread of rumors is the competitive location model introduced by Hakimi
[9]. Here, two competitors alternately choose locations for their facilities on a
network. The author assumes that the first player knows of the existence of the
second player and its budget, i.e., the leader can take the possible reactions of
the follower into consideration. In turn, the follower has full knowledge of the
leader’s chosen positions and adapts its decision accordingly. Hakimi shows that
finding the leader’s and the follower’s position on general graphs is NP-hard.
Our model differs from Hakimi’s two main aspects, namely he permits locating
facilities on edges, and the placing of multiple users at nodes. Voting theory [10]
introduces notions such as plurality solution, Condorcet solution or Simpsons
solution describing the acceptance among a set of people, some of which we will
use in our analysis.

A large body of research covers the dynamics of epidemics on networks, e.g.,
[2,17,18,19,20] to name but a few. Many of these models are applicable to the
diffusion of information for a single player, however, to the best of our knowledge
no work exists on epidemics that fight each other.

3 Model and Notation

3.1 Propagation Models

The Propagation Model describes the dissemination of k competing rumors on
an undirected graph G(V, E). Initially, each node is in one of k+1 states. A node
is in state i ≤ k if it believes rumor i, in state 0 if it has not heard any rumors
yet. In the first step all nodes apart from the nodes in state 0, send a message
containing rumor i to their neighbors, informing them about their rumor. Now,
all nodes in state 0 that received one or more messages decide which rumor they
believe (if any), i.e. they change their state to i if they decided to accept rumor

188 J. Kostka, Y.A. Oswald, and R. Wattenhofer

i, or remain in state 0, or adopt state ∞ if they reject all rumors. Nodes in
state i ∈ {1 . . . k} spread the rumor by forwarding a message to their neighbors.
These steps are repeated recursively until no messages are transmitted any more.
Observe that in this model each node transmits at most once and no node ever
changes its first decision.

Depending on the process of reaching a decision after receiving one or several
messages the diffusion of the rumors differs. In this paper we mostly consider
the basic model where each node trusts the first rumor it encounters unless two
or more different rumors arrive at the same time in which case the node chooses
state ∞, i.e., it refuses to decide and ignores all further messages.

This model can easily be extended by varying the decision process. E.g.,
rumor i could be accepted and forwarded to the neighbors with probability
Prumori = #messages rumori

#messages . Thereby the decision depends on the number of
messages containing rumor i versus the total number of messages received in
this time slot. Moreover, edges could be oriented and a persuasiveness value
could be assigned to each rumor influencing the decision. A more complex model
such as the linear threshold model or the independent cascade model could be
implemented. Note that our basic model is a special case of the independent
cascade model. The threshold model has been introduced by Granovetter [8]
and Schelling [21], who were among the first to define a model that handles the
propagation of information in networks. In this model, a node u forwards a ru-
mor i to all neighbors if the accumulated persuasiveness of the received messages
i exceeds a threshold,

∑
mi

psvu(mi) ≥ t. The independent cascade model has
been proposed in the context of marketing by Goldenberg, Libai and Muller [6].
Here, a node u is given one opportunity to propagate rumor i to neighbor v with
probability pu,v. Thereafter no further attempts of node u to convince node v

take place. Kempe et al. [14] show that these two models can be generalized
further and ultimately are equivalent.

3.2 Strategic Rumor Game

Consider two players p1, p2 and a graph G(V, E). Player p1 selects a subset V1 ⊂
V of nodes corresponding to the set of nodes initiating rumor 1. Subsequently, p2

selects the seeds for rumor 2, a set V2 ⊂ V , where V1 ∩V2 = ∅. The rumors then
propagate through the graph as specified by the propagation model. The payoff
for player pi is calculated when the propagation has terminated and equals the
number of nodes that believe rumori. This model can be extended to multiple
players, where each players’ strategy consists of a disjoint set of nodes to initiate
their rumors.

Observe that this game is related to the classic subject of competitive location
theory and the equilibrium analysis of voting processes. In order to analyze our
rumor game in different topologies we therefore introduce the notions Distance
Score and Condorcet Node.

Word of Mouth: Rumor Dissemination in Social Networks 189

Definition 1. For any two nodes vi, vj ∈ V the number of nodes that are closer
to vi than to vj is designated as the distance score, DSi(j) = |{v ∈ V : d(v, vi) <

d(v, vj)}|. A node vj ∈ V is called a Condorcet node if DSi(j) ≤ |V |/2 for every
vi ∈ V \ {vj}.

Thus a node vj ∈ V is called a Condorcet node if no more than one half of the
nodes accept a rumor from any other node in the graph. Note that this definition
differs from the original definition of a Condorcet Point that can be anywhere
on the graph, including edges.

4 Analysis

Location theory studies the optimal distribution of facilities such that the dis-
tance to the users is minimized. In our basic model, we consider a very similar
problem. Instead of two facility providers two rumors compete for users. Hakimi
et al. [9] examine the facility location problem in a weighted graph, i.e., each
edge is assigned a length value. The facilities are located at nodes or edges, the
users are located at nodes only and multiple users are allowed per node. We
adjust these concepts to our model where only one user is located at each node
and the edge lengths are restricted to 1. Furthermore, the rumors cannot start
on edges, i.e., the available locations are confined to the nodes.

The (r|p)-medianoid problem in location theory asks to locate r new facilities
in the graph which compete with p existing facilities for reaching more users.
Whereas the (r|p)-centroid problem examines how to place the p facilities when
knowing that r facilities are located afterwards by a second player. We adapt
these two terms for the problems faced by player 1 and player 2 in the rumor
game.

Definition 2. Player 1 solves the (r|p)-centroid problem of a graph by selecting
p nodes to initiate rumor 1 ensuring that the number of nodes convinced by
rumor 1 is maximized when player 1 knows that player 2 will choose r nodes.

Definition 3. Player 2 solves the (r|p)-medianoid problem of a graph by select-
ing r nodes to initiate rumor 2 ensuring that the number of nodes convinced by
rumor 2 is maximized when player 1 has chosen p nodes already.

The locational centroid and medianoid problems have been shown to be NP-
complete in [9]. Our rumor game using the basic model is a restricted special
case of the general facility location problem. In the following paragraphs we will
prove that the computation of optimal solutions in the rumor game is of the
same difficulty. To this end we need some additional notation. Let DG(v, Z) =
min{d(v, z)|z ∈ Z} for a subset Z ⊂ V , where d(v, z) describes the length of
a shortest path from v to z in G. Thus DG(v, Z) designates the length of the
shortest path from node v to a node z ∈ Z. Let Xp be the set of the p nodes
chosen by player 1 and Yr the set of the r nodes selected by player 2. The set of

190 J. Kostka, Y.A. Oswald, and R. Wattenhofer

u v

f

 w

e1

e2

1

f 2

Fig. 1. Diamond structure used for the reduction of the centroid problem

nodes that are closer to a rumor published by Yr than to the ones published by
Xp is V (Yr|Xp) = {v ∈ V |D(v, Yr) < DG(v, Xp)}. This allows us to define the
part of the graph controlled by rumors placed at Yr as W (Yr|Xp) = |V (Yr|Xp)|.

4.1 Complexity of the Centroid Problem

We demonstrate how the (1|p)-centroid problem can be reduced to from Vertex
Cover.

Theorem 4. The problem of finding an (1|p)-centroid of a graph is NP-hard.

Proof. We prove this theorem by reducing the Vertex Cover (VC) problem to
the (1|p)-centroid problem. An instance of the VC problem is a graph G(V, E)
and an integer p < |V |. We have to determine whether there is a subset V ′ ⊂ V

with |V ′| ≤ p such that each edge e ∈ E has at least one end node in V ′.
Given an instance of the VC problem, we construct a graph Ḡ(V̄ , Ē) from

G by replacing each edge ei = (u, v) in G by the diamond structure shown in
Figure 1. Let Y1(Xp) be the node chosen by player 2 when player 1 has selected
the nodes Xp. We prove our theorem by showing that there exists a set Xp of
p nodes on Ḡ such that W (Y1(Xp)|Xp) ≤ 2 for every node Y1(Xp) on Ḡ, if and
only if the VC problem has a solution.

Assume V ′ is a solution to the VC problem in G and |V ′| = p. Let Xp = V ′

on Ḡ. Then for any diamond joining u and v in Ḡ, either u or v belongs to
V ′ = Xp. It is easy to see that in this case W (Y1(Xp)|Xp) ≤ 2 for every node
Yr(Xp) in Ḡ. On the other hand suppose the set of p nodes Xp on Ḡ satisfies
the requirement W (Y1(Xp)|Xp) ≤ 2 for every choice of node Y1(Xp) on Ḡ. If on
each diamond of Ḡ there exists at least one node of Xp, then we can move this
node to u or v ∈ V ′ ⊂ V . It follows that each diamond has either u or v in V ′

and therefore V ′ would provide a solution to the VC problem in G. What can we
say about diamonds in Ḡ joining u and v on which no node of Xp lies? Without
loss of generality we may state that there has to be an adjacent diamond with
at least one node of Xp, otherwise W (Y1(Xp)|Xp) ≤ 2 is violated. No matter
whether w, f1 or f2 is in Xp, player 2 can select v yielding W (Y1(Xp)|Xp) ≥ 3.
Consequently, player 1 has to choose at least one node on each diamond and the
claim follows. �

Word of Mouth: Rumor Dissemination in Social Networks 191

u v

e1 e3

e2

ei

Fig. 2. Graph Ḡ used for the reduction of the approximation of the centroid problem

Note that for trees the(1|1)-centroid is always on a node in the facility location
context [22]. Hence the algorithm proposed by Goldman [7] can be used to find
an(1|1)-centroid on trees in time O(n).

Intriguingly, even finding an approximate solution to the (1|p)-centroid prob-
lem is NP-hard. We define Xα

p to be an α-approximate (1|p)-centroid if for any
1 < α ∈ o(n) it holds that W (Y OPT

1 (Xα
p)|Xα

p) ≤ αW (Y OPT
1 (XOPT

p)|XOPT
p .

Theorem 5. Computing an α-approximation of the (1|p)-centroid problem is
NP-hard.

Proof. This proof uses a reduction from Vertex Cover again and follows the
previous proof closely. Given an instance of the VC problem, we construct a
graph Ḡ(V̄ , Ē) from G by replacing each edge ei = (u, v) in G by another
diamond structure shown in Figure 2. Instead of adding two nodes and five
edges for every edge (u, v), we introduce a clique of 4α − 2 nodes and connect
u and v to each node of the clique. Moreover we insert one node on each of the
edges from u, v to one designated node of the clique. In a first step we show that
W (Y1(Xp)|Xp) ≤ 4α for every node player 2 might pick as Y1 if and only if VC
has a solution.

Assume V ′ is a solution to the VC problem in G and |V ′| = p. Let Xp = V ′

on Ḡ. Then for any diamond joining u and v in Ḡ, either u or v belongs to
V ′ = Xp. It is easy to see that in this case W (Y1(Xp)|Xp) ≤ 4 ≤ 4α for every
node Yr(Xp) in Ḡ. On the other hand suppose Xp satisfies W (Y1(Xp)|Xp) ≤ 4α

for every choice of node Y1(Xp) on Ḡ. If on each diamond of Ḡ there exists at
least one node of Xp, then we can move this node to u or v ∈ V ′ ⊂ V . It follows
that each diamond has either u or v in V ′ and therefore V ′ would provide a
solution to the VC problem in G.

Suppose there is a diamond without a node in Xp. In this case, it is easy
to see that if min{D(u, Xp), D(v, Xp)} exceeds one, W (Y1(Xp)|Xp) ≥ 4α + 2.
Hence we may assume that 0 < min{D(u, Xp), D(v, Xp)} ≤ 1 and we can
state without loss of generality that there has to be an adjacent diamond with
at least one node of Xp in distance 1 to u. No matter which of the suit-
able nodes is in Xp, player 2 can select u yielding W (Y1(Xp)|Xp) ≥ 4α + 1.

192 J. Kostka, Y.A. Oswald, and R. Wattenhofer

G(V,E)
...

s

s

s

s

1

2

3

n

sn+1

G(V,E)

v2

v3

vn

v1

v4

v5

v6

Fig. 3. Graph Ḡ used in the reduction of the medianoid problem

Consequently, player 1 has to add another node on this diamond to Xp to
avoid a violation of our presumption. Thus we can easily construct a VC out
of Xp. Moreover, we can prove using similar arguments that Xp exists on Ḡ

such that the condition that W (Y1(Xp)|Xp) ≤ 4 holds for every node Y1(Xp)
on Ḡ if and only if VC on G has a solution. Consequently it must hold that
W (Y1(Xp)|Xp) ≤ αW (Y OPT

1 (XOPT
p)|XOPT

p) ≤ 4α and the statement of the
theorem follows. �

4.2 Complexity of the Medianoid Problem

The second player has more information than the first player, however, deter-
mining the optimal set of seeding nodes for player 2 is in the same complexity
class. We prove this by a reduction of the dominating set problem to the (r|X1)-
medianoid problem.

Theorem 6. The problem of finding an (r|X1)-medianoid of a graph is
NP-hard.

Proof. Consider an instance of the NP-complete Dominating Set (DS) problem,
defined by a graph G(V, E) and an integer r < n, where n = |V |. The answer
to this problem states whether there exists a set V ′ ⊂ V such that |V ′| ≤ r

and DG(v, V ′) ≤ 1 for all v ∈ V . We construct a graph Ḡ(V̄ , Ē) with node set
V̄ = V ∪S, where S consists of n+1 nodes. Let the nodes in V be numbered from
v1, . . . , vn and the nodes in S from s1, . . . , sn+1. For each node si, i ∈ {1, . . . , n},
we add an edge to sn+1, an edge to vi as well as an edge to every neighbor of
vi, compare Figure 3. Thus the edge set is Ē = E ∪ Es, where Es = {(si, vi)|s ∈
S, v ∈ V } ∪ {(vn+1, v)|v ∈ S \ {vn+1}} ∪ {(si, vj)|(vi, vj) ∈ E}. Let player 1
choose sn+1. We show now that there exist r nodes in Ḡ composing Yr such that
W (Yr|sn+1) = |V | + r, if and only if the DS problem has a solution in G.

Assume the DS problems has a solution in G. In this case there exists V ′ ⊂
V with |V ′| = r such that DG(v, V ′) ≤ 1 for all v ∈ V . Let Yr contain
the nodes in S corresponding to V ′, i.e., Yr = {si|vi ∈ V ′}. It follows that

Word of Mouth: Rumor Dissemination in Social Networks 193

x1x2

y2
y1

z1

x0

y2

z2

Fig. 4. Example of a graph where the first player never wins

W (Yr|sn+1) = |V | + r, because ∀v ∈ V D(v, Yr) = 1 < d(v, sn+1) = 2.
Suppose Yr is such that W (Yr|sn+1) = |V | + r. For all nodes si ∈ Yr it holds
that W (si|sn+1) ≤ W (vj |sn+1), if si and vj are neighbors. This follows from
the fact that on every path from a node v ∈ V to sn+1 in Ḡ there is a node si,
i < n + 1. By removing si from Yr and adding its neighbor vi ∈ V to Yr we main-
tain ∀v ∈ V D(v, Yr) = 1 < d(v, sn+1) = 2. We repeat these steps for all nodes
si ∈ S ∩ Yr yielding Yr ⊂ V . Clearly, W (Yr|sn+1) = |V |, letting us state for all
v ∈ V, D(v, Yr) < d(v, sn+1) = 2. Thus this adapted set Yr is a solution to DS. �

Observe that the hill-climbing algorithms proposed in [3] can be adapted to
provide (1 − 1/e − ε)-approximations of the medianoid problem in polynomial
time.

4.3 Advantage of the First Player

Intuitively, one would assume that the first player has an advantage over the
second player because it has more choice. Hence one might think that the first
player is always able to convince more nodes than the second player if it selects
its seed nodes carefully. Theorem 7 proves the contrary.

Theorem 7. In a two player rumor game where both player select one node to
initiate their rumor in the graph, the first player does not always win.

Proof. We consider an instance of the rumor game where both the first and the
second player can select one node each as a seed. See Figure 4 for an example
where the second player can always persuade more players than the first player
regardless of the decision the first player makes. If player 1 chooses the node
x0 in the middle, the second player can select x1 thus ensuring that 7 nodes
believe rumor 2 and only 5 nodes adopt rumor 1. If player 1 decides for node x1,
player 2 can outwit the first player by choosing x2. If player 1 designates x2 as
its seed, the second player select z1. All other strategies are symmetric to one

194 J. Kostka, Y.A. Oswald, and R. Wattenhofer

Fig. 5. Example where a Condorcet Node vi yields a low payoff for player 1. The

subgraph in the circle is a complete graph.

of the options mentioned or even less promising for player 1. Hence the second
player can always convince 7 nodes whereas the first player has to content itself
with 5 persuaded nodes. �

Since there exists no Condorcet Node in the graph in Figure 4, the curious reader
might wonder whether a Condorcet Node guarantees at least n/2 convinced
nodes for the first player. This conjecture is also wrong as Figure 5 demonstrates.

4.4 Heuristics for Centroid

Having discovered that there are graphs were the second player always is more
successful in distributing its rumor, we now concentrate on games where the first

P1

P2

P2

P1

P2P1

(a)

(b)

(c)

Fig. 6. Counterexamples for heuristics where player 1 wins fewer nodes than player 2

(a) Player 1 selects the node with smallest radius. (b) Player 1 selects the node with

highest degree. (c) Player 1 selects the midpoint of the minimum spanning tree.

Word of Mouth: Rumor Dissemination in Social Networks 195

player could convince more nodes than the second player. Since determining
a centroid is NP-complete we consider the following (efficiently computable)
strategies the first player can pursue: choose the node with smallest radius, with
largest degree or the midpoint of the minimal spanning tree. The node with
minimal maximal distance to any other node is the midpoint of the spanning
tree. However, for these strategies Figure 3 shows examples where they do not
win. In the example shown in Figure 6(a) player 1 selects the node vj with
the smallest radius radmin, i.e., the minimum over all nodes v of the greatest
distance between v and any other node. In this case the second player wins more
than player 1 by choosing the highest degree node vi, if it holds degree(vi) >

3 · radmin/2. In Figure 6(b) player 1 selects the node vi with highest degree. If
it holds n > 2 · degree(vi) then player 2 wins more than half of the nodes by
selecting the neighbor of vi. When the midpoint of a spanning tree is chosen by
player 1 then it is easy to see that player 2 can choose a neighbor and win more
than half of the nodes, compare Figure 6(c). For all these heuristics there even
exist graphs where the first player wins three nodes and the remaining nodes
adopt the second rumor.

5 Conclusion

In this paper we have presented the rumor game which models the dissemination
of competing information in networks. We defined a model for the game and
specified how the propagation of the rumors in the network takes place. We
proved that even for a restricted model computing the (r|p)-medianoid and (r|p)-
centroid and its approximation is NP-complete. Moreover, we demonstrated the
weaknesses of some heuristics for finding the centroid. Finally we proved the
surprising fact that the first player does not always win our two-player rumor
game, even when applying optimal strategies.

References

1. Bharathi, S., Kempe, D., Salek, M.: Competitive influence maximization in social

networks. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp.

306–311. Springer, Heidelberg (2007)

2. Breban, R., Vardavas, R., Blower, S.: Linking population-level models with growing

networks: A class of epidemic models. Physical Review E 72(4) (2005)

3. Carnes, T., Nagarajan, C., Wild, S.M., van Zuylen, A.: Maximizing influence in

a competitive social network: a follower’s perspective. In: Proceedings of the 9th

international conference on Electronic commerce (ICEC) (2007)

4. Cheong, O., Har-Peled, S., Linial, N., Matoušek, J.: The one-round voronoi game.

Discrete & Computational Geometry (2004)

5. Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceed-

ings of the 7th international conference on Knowledge discovery and data mining

(KDD) (2001)

196 J. Kostka, Y.A. Oswald, and R. Wattenhofer

6. Goldenberg, J., Libai, B., Muller, E.: Using complex systems analysis to advance

marketing theory development. Academy of Marketing Sc. Rev. (2001)

7. Goldman, A.J.: Optimal center location in simple networks. Transportation Sci-

ence, 212–221 (1971)

8. Granovetter, M.: Threshold models of collective behavior. American Journal of

Sociology 83(6), 1420–1443 (1979)

9. Hakimi, S.: Locations with Spatial Interactions: Competitive Locations and Games.

Discrete Location Theory, 439–478 (1990)

10. Hansen, P., Thisse, J.-F., Wendell, R.E.: Equilibrium Analysis for Voting and Com-

petitive Location Problems. Discrete Location Theory, 479–501 (1990)

11. Hotelling, H.: Stability in Competition. Economic Journal 39, 41–57 (1929)

12. Leskovec, J., Adamic, L., Huberman, B.: The dynamics of viral marketing. In:

Proceedings of the 7th conference on Electronic commerce (EC) (2006)

13. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the Spread of Influence through

a Social Network. In: Proceedings of the 9th international conference on knowledge

discovery and data mining (KDD) (2003)

14. Kempe, D., Kleinberg, J., Tardos, É.: Influential Nodes in a Diffusion Model for

Social Networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung,

M. (eds.) ICALP 2005. LNCS, vol. 3580. Springer, Heidelberg (2005)

15. Leskovec, J., Singh, A., Kleinberg, J.: Patterns of influence in a recommendation

network. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006.

LNCS (LNAI), vol. 3918. Springer, Heidelberg (2006)

16. Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-item col-

laborative filtering. IEEE Internet Computing 7(1), 76–80 (2003)

17. Marder, M.: Dynamics of epidemics on random networks. Physical Review E 75(6),

066103 (2007)

18. Moore, C., Newman, M.E.J.: Epidemics and percolation in small-world networks.

Physical Review E 61(5), 5678–5682 (2000)

19. Newman, M.E.J.: Spread of epidemic disease on networks. Physical Review E 66(1),

016128 (2002)

20. Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in

complex networks. Physical Review E 63(6), 066117 (2001)

21. Schelling, T.: Micromotives and Macrobehavior. Norton (1978)

22. Slater, P.J.: Maximin facility location. Journal of National Bureau of Stan-

dards 79B, 107–115 (1975)

23. Stackelberg, H.V.: Marktform und Gleichgewicht. Julius Springer, Heidelberg

(1934)

Non-preemptive Coordination Mechanisms for

Identical Machine Scheduling Games

Konstantinos Kollias

Department of Informatics and Telecommunications, University of Athens,
Panepistimiopolis Ilisia, Athens 15784, Greece

k.kollias@di.uoa.gr�

Abstract. We study coordination mechanisms for scheduling n selfish
tasks on m identical parallel machines and we focus on the price of
anarchy of non-preemptive coordination mechanisms, i.e., mechanisms
whose local policies do not delay or preempt tasks. We prove that the
price of anarchy of every non-preemptive coordination mechanism for
m > 2 is Ω(log log m

log log log m
), while for m = 2, we prove a 7

6 lower bound. Our
lower bounds indicate that it is impossible to produce a non-preemptive
coordination mechanism that improves on the currently best known price
of anarchy for identical machine scheduling, which is 4

3 − 1
3m

.

1 Introduction

Computer networks are characterized by the presence of multiple autonomous
users that share common system resources. These users behave selfishly and their
actions result in suboptimal system performance. This situation can be modeled
in the framework of game theory [19,20]. The users are the selfish players who
choose their strategies such as to minimize their individual costs. We assume
the outcome of the game will be a Nash equilibrium [17], which is a set of
strategies, one for each player, such that no player benefits from switching to
a different strategy unilaterally. In game theory it is well known that a Nash
equilibrium does not necessarily constitute a socially optimal outcome. In fact,
computer systems are almost certain to suffer performance degradation due to
the selfishness of the users. The performance of the system is measured by a social
cost, e.g., the maximum or the average of the players’ costs. The deterioration
in performance is captured by the price of anarchy [15,21] which is the worst
case ratio of the social cost in a Nash equilibrium, to the optimal social cost.

In such settings, applying a centralized control upon the users is infeasilbe
and algorithmic choices are restricted to designing the system a priori. The idea
of designing system-wide rules and protocols is traditional in game theory and is
termed mechanism design [18]. In this framework, various approaches have been
proposed, such as imposing economic incentives upon players [5,7,10] or applying
the Stackelberg strategy [4,12,22,23], which involves enforcing several strategies

� Research supported in part by IST-015964, AEOLUS.

A. Shvartsman and P. Felber (Eds.): SIROCCO 2008, LNCS 5058, pp. 197–208, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

198 K. Kollias

on a subset of the players. Another approach is the design of coordination mech-
anisms [6]. Coordination mechanisms are different from the forementioned ap-
proaches in that they are distributed and do not require global knowledge, which
can be very important in some settings. Informally, a coordination mechanism
is a set of local policies, that assign costs to the players.

Consider, for example, a selfish scheduling game. The game consists of n selfish
tasks that wish to be executed on a system of m machines. The coordination
mechanism of this game defines the local scheduling policies of the m machines.
A policy of a machine decides the execution order of the tasks and imposes
additional delays on some tasks, without knowing the state of the system outside
the machine. The strategy of each task is a probability distribution on the m
machines. The cost that each task wishes to minimize is its expected completion
time. The social cost of the game is the expected makespan, i.e., the expected
maximum cost of all tasks. The price of anarchy of a coordination mechanism
is the worst case ratio of the social cost in a Nash equilibrium, to the optimal
social cost, for every possible set of selfish tasks.

We focus on identical machine scheduling, i.e., selfish scheduling on m ma-
chines with identical speed. More specifically, we study the price of anarchy
of non-preemptive coordination mechanisms for identical machine scheduling,
which are mechanisms whose local policies simply decide the execution order of
the tasks. The term “non-preemptive” for this kind of policies is due to Azar,
Jain and Mirrokni [3].

1.1 Related Work

The price of anarchy of selfish scheduling was first studied in [15] by Koutsoupias
and Papadimitriou. Some of their results concern m identical machines that
complete all tasks simultaneously or schedule them in a random order. For both
coordination mechanisms the price of anarchy was shown to be 3

2 , if m = 2, and
Ω(log m

log log m), if m > 2. Mavronicolas and Spirakis [16] extended the result for m

machines and proved that the price of anarchy is Θ(log m
log log m) for the fully mixed

model, in which all tasks assign non-zero probability to all machines. Finally,
Czumaj and Vocking in [9] and Koutsoupias et al in [14] independently proved
that the price of anarchy of these mechanisms for m > 2 is Θ(log m

log log m). The
forementioned results hold for all coordination mechanisms, whose m machines
have identical speed and follow the same scheduling policy.

In [15] the authors also studied the related machine model in which the ma-
chines have different speeds. The price of anarchy for 2 machines, that complete
all tasks simultaneously or schedule them randomly, is at least the golden ratio
φ = 1+

√
5

2 . In [9] the authors proved that the price of anarchy for m > 2 is
Θ(log m

log log log m). Another extension has been studied in [2] by Awerbuch et al. In
their paper they extended the forementioned model by not allowing all players
to select all machines. They proved that the price of anarchy of this restricted
assignment model is Θ(log m

log log log m).

Non-preemptive Coordination Mechanisms 199

In [6], Christodoulou et al proposed various coordination mechanisms for the
identical machine model. First, they presented the Increasing-Decreasing mecha-
nism. This is a non-preemptive coordination mechanism for 2 machines. The first
machine’s policy schedules the tasks in increasing task length order. The second
machine schedules the tasks using the exact opposite order. The price of anar-
chy of this mechanism is 4

3 . They also presented the All-Decreasing mechanism,
which is a coordination mechanism for m ≥ 2 machines. All machines schedule
the tasks in decreasing task length order and each machine j adds a delay jε to
all tasks, with ε infinitesimal. The price of anarchy of this mechanism is 4

3 − 1
3m ,

which is the currently best known price of anarchy for this setting. Christodoulou
et al [6], also introduced truthful coordination mechanisms. A coordination mech-
anism is truthful if no player can benefit from altering the task’s length. Their
All-Increasing mechanism, which is similar to the All-Decreasing mechanism but
with opposite scheduling order, is truthful and has price of anarchy 2 − 2

m+1 .
In [1], Angel et al define a randomized truthful coordination mechanism for 2
machines that has better price of anarchy than the All-Increasing mechanism.

Immorlica et al in [11] studied several coordination mechanisms for 4 selfish
scheduling models. They proved upper and lower bounds for the price of an-
archy of these mechanisms, concerning Nash equilibria where each task assigns
probability 1 to some machine. The models studied involve identical machine
scheduling, related machine scheduling, the restricted assignment model and
unrelated machine scheduling. In the last model, the processing time of a task
on a machine is an arbitrary positive number. For some of them, they studied
the convergence to a Nash equilibrium and proved it is linear. Recently, Azar et
al in [3] studied coordination mechanisms for scheduling selfish tasks on unre-
lated machines and managed to improve the price of anarchy of this model to
Θ(log m).

1.2 Our Contributions

We study the price of anarchy of non-preemptive coordination mechanisms for
identical machine scheduling. First we give lower bounds for the case of m > 2
machines. We prove that the price of anarchy of all non-preemptive coordination
mechanisms for m > 2 is Ω(log log m

log log log m) and always at least 3
2 . For the case of

m = 2 we prove a 7
6 lower bound for the price of anarchy of all non-preemptive

coordination mechanisms. The constant lower bounds prove that, for all m, it
is impossible to produce a non-preemptive coordination mechanism with price
of anarchy less than 4

3 − 1
3m , which is the best known price of anarchy for this

setting and is achieved by the All-Decreasing mechanism of [6].

2 The Model

An identical machine scheduling game can be fully described by a set of task
lengths w = {w1, w2, . . . , wn} and a coordination mechanism c that defines the m
local scheduling policies. wi is the length of task i, i.e., the processing time of task

200 K. Kollias

i on any machine. We assume that the tasks are given in increasing task length
order and that tasks with the same length can be ordered increasingly in a pre-
defined manner. The strategy of each task is a probability distribution over the
set of machines {1, 2, . . . , m}. Thus, if pj

i is the probability which task i assigns
to machine j, then E = ((p1

1, p
2
1, . . . , p

m
1), (p1

2, p
2
2, . . . , p

m
2), . . . , (p1

n, p2
n, . . . , pm

n))
is an outcome of the game. For the game defined by a coordination mechanism
c and a set of task lengths w, if E is the outcome, then cj

i (w; E) is the expected
cost of task i, if the task plays purely machine j. E is a Nash equilibrium if
and only if pj

i > 0 ⇒ cj
i (w; E) ≤ ck

i (w; E), for k = 1, 2, . . . , m. We will write
sc(c; w; E) for the social cost of outcome E in a game defined by c and w. The
social cost is the expected total makespan, i.e., the expected maximum comple-
tion time among all tasks. We will denote opt(w) the social cost of the optimal
allocation of the n tasks to the m machines. With N(c; w) being the set of Nash
equilibria of the game defined by c and w, we define the price of anarchy of a
coordination mechanism c as:

PoA(c) = max
w

max
E∈N(c;w)

sc(c; w; E)
opt(w)

.

2.1 Non-preemptive Coordination Mechanisms

A non-preemptive coordination mechanism consists of m non-preemptive poli-
cies. The algorithm, that implements a non-preemptive policy, takes as input
the tasks that are allocated to the machine and decides the order in which they
will be executed. A non-preemptive policy is not allowed to delay or preempt
tasks. The non-preemptive policy of a machine j can be fully described by an
infinite set of task length sequences, mj . There is exactly one sequence in mj

for every possible set of task lengths. These sequences define the order in which
the received tasks will be executed. Consider, for example, the following set of
sequences:

mj = {(5, 4), (1, 3, 2), (2, 3), . . .}.

The sequence (1, 3, 2) defines that if machine j receives 3 tasks ti, tk, tl, with
lengths wi = 1, wk = 2, wl = 3, then the tasks have completion times 1, 6 and 4
respectively. Obviously, since (1, 3, 2) ∈ mj , all other sequences of the numbers
1, 2 and 3 are not in mj . If a sequence contains several equal task lengths, the
policy makes them distinct by ordering them in the predefined manner mentioned
earlier. For example, if the machine has received 3 tasks with length 2, then
the sequence that describes the execution order could be (21, 23, 22). The task
with length 21 is considered the smallest among the three and the task with
length 23 is considered the largest. Thus the smallest task is executed first, the
largested task is executed second and the remaining task is executed last. A
non-preemptive coordination mechanism c for m machines can be written as
c = {m1, m2, . . . , mm}, with mj being the set of sequences of machine j.

Non-preemptive Coordination Mechanisms 201

3 The Price of Anarchy of Non-preemptive Coordination
Mechanisms

In this section, we evaluate the performance of non-preemptive coordination
mechanisms for identical machine scheduling. We do so by studying their price
of anarchy. At first, we focus on coordination mechanisms for m > 2 machines.
The following lemma gives an interesting preliminary result.

Lemma 1. If c is a non-preemptive coordination mechanism for m > 2, then
PoA(c) ≥ 3

2 .

Proof. Suppose we have a game with n = m tasks of length 1, with m > 2 being
the number of machines of a non-preemptive coordination mechanism. The set
of task lengths is w = {w1, w2, . . . , wm}, with wi = 1, for i = 1, 2, . . . , m. As
stated in section 2, it is assumed that the tasks are ordered in increasing order,
even if they have equal lengths. We can see that, since m > 2, there always exist
2 machines that schedule 2 tasks with length 1 the same way, since the possible
schedules are only 2: (11, 12) and (12, 11). We “mark” these machines and pro-
duce the following outcome. We find all “unmarked” machines with policies that
include (11, 12). Suppose we find l such machines. We select the tasks 1, 2, . . . , l
and allocate them, one each, to the l found machines. Now, we select the tasks
m, m − 1, . . . , m − l − 2 and allocate them, one each, to the rest m − l − 2 of
the “unmarked” machines, which obviously have policies that include (12, 11).
Now we are left with 2 tasks that are allocated with probability 1

2 to each of
the “marked machines”. Now we will prove that the outcome we constructed
is a Nash equilibrium. All tasks in “unmarked” machines have completion time
1, which is the best possible. The task that is executed first in both “marked”
machines, also has completion time 1. The final task has expected completion
time 3

2 in the “marked” machines. This task would have completion time 2 in

w1 = 1

w2 = 1

w3 = 1

w4 = 1

w5 = 1

marked machines

1
2

1
2

1
2

1
2

m1 = {(11, 12), . . .}

m2 = {(11, 12), . . .}

m3 = {(12, 11), . . .}

m4 = {(12, 11), . . .}

m5 = {(12, 11), . . .}

Fig. 1. The Nash equilibrium produced by our procedure for this instance, if we mark
machines 3 and 4

202 K. Kollias

any other machine, since all “unmarked” machines already have one task that
has priority over it. The expected makespan of this Nash equilibrium is 3

2 , while
the optimal makespan is obviously 1. This completes the proof. ��
The proof of the previous lemma can be extended1 from finding 2 machines
that follow the same policy for 2 tasks of length 1, to finding k machines that
follow the same policies for up to k tasks of length 1. This leads to the following
theorem.

Theorem 1. If c is a non-preemptive coordination mechanism for m > 2 ma-
chines, then

PoA(c) = Ω
(log log m

log log log m

)
.

Proof. For a game with n = m tasks of length 1, we seek to find a Nash equi-
librium, similar to the one of the previous proof, but with k > 2 tasks being
allocated with probability 1

k to k machines. For this purpose we need k machines
that produce the exact same schedule for 1, 2, 3, . . . , k −1 and k tasks of length
1. There are 1!2! . . . k! possible such policies. With m = 1!2! . . . k!(k − 1) + 1, we
are certain we can find the k machines we need. We “mark” the k machines,
follow the same procedure, looking at the sequence for 11, 12 of the “unmarked”
machines, and produce a Nash equilibrium, in which each “unmarked” machine
receives one task and the k tasks that are left last, are allocated with probability
1
k to the k “marked” machines. In the same way as in the previous proof, we
can confirm that this is a Nash equilibrium. All tasks in “unmarked” machines
have the smallest possible cost. The k tasks that play with probability 1

k all
“marked” machines, have expected cost at most 1+ k−1

k in any of them and cost
2 if they play any of the “unmarked” machines. Since k tasks are allocated with
probability 1

k to each one of k machines, the situation is identical to throwing
k balls at random to k bins. The expected maximum number of balls in a bin
is well known to be Θ(log k

log log k). Thus, this Nash equilibrium proves that the
price of anarchy of all non-preemptive coordination mechanisms is Ω(log k

log log k)
for m = 1!2! . . . k!(k − 1) + 1. From m = 1!2! . . . k!(k − 1) + 1, we get

log m = Θ(
k∑

j=1

j log j) = Θ(k2 log k) ⇒ k2 logk = Θ(log m).

This gives log k = Θ(log log m). We have seen that if c is a non-preemptive
coordination mechanism for a game with m = 1!2! . . . k!(k − 1) + 1 machines,
then PoA(c) = Ω(log k

log log k). By combining this with log k = Θ(log log m), we
prove the theorem. ��
Now we turn to the case of m = 2 machines. We will prove a lower bound for the
price of anarchy of all non-preemptive coordination mechanisms by following an
extensive case analysis. It begins with the following lemma.

1 We would like to thank the anonymous reviewer who suggested this extension.

Non-preemptive Coordination Mechanisms 203

Lemma 2. c = {m1, m2} is a non-preemptive coordination mechanism. Suppose
that both machines produce the same schedule for 2 tasks with lengths w1, w2 ∈
{2, 3}, w1 ≤ w2. The price of anarchy of the mechanism is at least 4

3 .

Proof. For a game defined by the described coordination mechanism c and
the set of task lengths w = {w1, w2}, there always exists the Nash equilib-
rium E = ((1

2 , 1
2), (1

2 , 1
2)). Obviously opt(w) = w2. The social cost of the Nash

equilibrium is

sc(c; w; E) =
1
2
(w1 + w2) +

1
2
w2 ⇒ PoA(c) ≥ 1 +

w1

2w2
,

which for w1, w2 ∈ {2, 3}, proves the lemma. ��
The forementioned lemma proves that if a mechanism c = {m1, m2} is to have
price of anarchy lower than 4

3 , then the mechanism does not have the same policy
on tasks of length 2 or 3. That is, one of the policies includes (21, 22) and the
other includes (22, 21), one includes (31, 32) and the other includes (32, 31), one
includes (2, 3) and the other includes (3, 2). Without loss of generality, we will
assume (2, 3) ∈ m1 and (3, 2) ∈ m2. We will call this property the 2-3-Mirror
Property. We need to examine all mechanisms with this property and study their
price of anarchy. There are the following possible cases:

m1 = {(2, 3), (22, 21), (31, 32), . . .}, m2 = {(3, 2), (21, 22), (32, 31), . . .}.

m1 = {(2, 3), (21, 22), (31, 32), . . .}, m2 = {(3, 2), (22, 21), (32, 31), . . .}.

m1 = {(2, 3), (22, 21), (32, 31), . . .}, m2 = {(3, 2), (21, 22), (31, 32), . . .}.

m1 = {(2, 3), (21, 22), (32, 31), . . .}, m2 = {(3, 2), (22, 21), (31, 32), . . .}.

We will only examine coordination mechanisms that match the first case. We
will prove that their price of anarchy is at least 7

6 and show how the same proof
can be applied to the other 3 cases as well. If a mechanism matches the first
case, we will say that the mechanism satisfies the Specific 2-3-Mirror Property.

Our proof will procede with 8 lemmata which prove that for a coordination
mechanism c = {m1, m2}, that satisfies the Specific 2-3-Mirror Property, and
for every sequence of 21, 22, 3 in m1, the price of anarchy of c is at least 7

6 . The
next lemma examines the case in which m1 includes (3, 22, 21). The lemmata
that follow examine the remaining 5 cases.

Lemma 3. If c = {m1, m2} satisfies the Specific 2-3-Mirror Property and m1
includes (3, 22, 21), then PoA(c) ≥ 7

6 .

Proof. For the described mechanism c, suppose that when machine 2 receives 3
tasks with lengths 2, 2, 3, then the task with length 3 is executed first. Now,
suppose we have a game with 4 tasks such that w = {2, 2, 3, 3}. This game has
the Nash equilibrium E = ((1, 0), (1

2 , 1
2), (1, 0), (0, 1)). Examination of the costs

confirms this is a Nash equilibrium. We can see that

c1
1(w; E) =

1
2
7 +

1
2
2 and c2

1(w; E) ≥ 1
2
5 +

1
2
5, so c1

1(w; E) < c2
1(w; E),

204 K. Kollias

c1
2(w; E) = c2

2(w; E) = 5,

c1
3(w; E) =

1
2
3 +

1
2
5 and c2

3(w; E) ≥ 1
2
6 +

1
2
3, so c1

3(w; E) < c2
3(w; E) and

c2
4(w; E) = 3, which is the smallest possible.

Thus, we confirm that E is a Nash equilibrium. We can see that the expected
social cost is sc(c; w; E) = 1

27 + 1
25 = 6, while opt(w) = 5. So, this coordination

mechanism has price of anarchy at least 6
5 . In the rest of this paper we will

present several Nash equilibria that can be cofirmed the same way. Now, suppose
that when machine 2 receives 3 tasks with lengths 2, 2, 3, then the task with
length 3 is executed second. For this mechanism, if w = {2, 2, 2, 3} then E =
((0, 1), (0, 1), (1, 0), (1

2 , 1
2)) is a Nash equilibrium with expected social cost 6,

while the optimal social cost is 5. This way we get a 6
5 lower bound for the price

of anarchy of this mechanism. Finally, we examine the case where if machine
2 receives 3 tasks with lengths 2, 2, 3, then the task with length 3 is executed
third. For w = {2, 2, 3}, E = ((2

3 , 1
3), (0, 1), (1, 0)) is a Nash equilibrium with

sc(c; w; E) = 14
3 , while opt(w) = 4, which proves that the price of anarchy

of this mechanism is at least 7
6 . At this point, we have examined the described

coordination mechanism with all possible sequences of 21, 22, 3 in m2 and proved
that in all cases the price of anarchy is at least 7

6 . This proves the lemma. ��

Lemma 4. If c = {m1, m2} satisfies the Specific 2-3-Mirror Property and m1
includes (3, 21, 22), then PoA(c) > 7

6 .

Proof. For a game with w = {2, 2, 3} and c the described mechanism, there is
always the Nash equilibrium E = ((1, 0), (1, 0), (1

4 , 3
4)) with expected social cost

19
4 . Thus, we get that the price of anarchy of the mechanism is at least 19

16 > 7
6 .
��

Lemma 5. If c = {m1, m2} satisfies the Specific 2-3-Mirror Property with m1
including either (21, 22, 3) or (22, 21, 3), then PoA(c) ≥ 6

5 .

Proof. For the described mechanism, suppose that when machine 2 receives
3 tasks with lengths 2, 3, 3, the task with length 2 is executed second or
third. Then for a game with w = {2, 2, 3, 3}, E = ((1, 0), (1, 0), (0, 1), (0, 1))
is a Nash equilibrium with social cost 6. It is obvious that opt(w) = 5, so
this mechanism has price of anarchy at least 6

5 . Now we need to examine the
price of anarchy of the mechanism when m2 includes (2, 31, 32) or (2, 32, 31).
We know that m1 includes (21, 22, 3) or (22, 21, 3), so we need to examine 4
cases. We will examine each one in a game with w = {2, 2, 3, 3}. If m1 includes
(22, 21, 3) and m2 includes (2, 32, 31), then E = ((3

4 , 1
4), (1, 0), (2

3 , 1
3), (0, 1)) is

a Nash equilibrium with expected social cost 13
2 . If m1 includes (22, 21, 3) and

m2 includes (2, 31, 32), then E = ((3
7 , 4

7), (1, 0), (0, 1), (2
3 , 1

3)) is a Nash equilib-
rium with expected social cost 44

7 . If m1 includes (21, 22, 3) and m2 includes
(2, 32, 31), then E = ((3

4 , 1
4), (1, 0), (2

5 , 3
5), (0, 1)) is a Nash equilibrium with ex-

pected social cost 13
2 . If m1 includes (21, 22, 3) and m2 includes (2, 31, 32), then

E = ((3
7 , 4

7), (1, 0), (0, 1), (2
5 , 3

5)) is a Nash equilibrium with expected social cost
232
35 . Since the optimal social cost in all cases is 5, the lemma holds. ��

Non-preemptive Coordination Mechanisms 205

Lemma 6. If c = {m1, m2} satisfies the Specific 2-3-Mirror Property with m1
including either (21, 3, 22) or (22, 3, 21) and m2 including either (3, 22, 21) or
(3, 21, 22), then PoA(c) ≥ 7

6 .

Proof. Suppose we have a game with a mechanism c, as described, and w =
{2, 2, 2, 3, 3}. We will costruct an outcome that sees 2 tasks, with lengths 2 and
3, playing (1, 0) and 3 tasks, with lengths 2, 2 and 3, playing (0, 1). We pick one
task of length 3 that would have completion time at least 6 in machine 2, if that
machine received 4 tasks with lengths 2, 2, 3, 3. This task is allocated to machine
1 with cost 5, since machine 1 will receive 2 tasks with lengths 2, 3. Thus, this
task has no incentive to switch strategy. The other task of length 3 is allocated
to machine 2, where it is executed first. So, this task has no incentive to switch,
either. The tasks of length 2, choose their strategies as follows. If m1 includes
(22, 3, 21), then tasks 1 and 2 play (0, 1), while task 3 plays (1, 0). Otherwise,
tasks 2 and 3 play (0, 1), while task 1 plays (1, 0). It is easy to confirm that
the forementioned allocation is a Nash equilibrium with social cost 7, while the
optimal social cost is 6. This proves the lemma. ��

Lemma 7. If c = {m1, m2} satisfies the Specific 2-3-Mirror Property with m1
including (21, 3, 22) and m2 not including (3, 22, 21) and (3, 21, 22), then
PoA(c) > 7

6 .

Proof. For the described coordination mechanism and a game with set of task
lengths w = {2, 2, 3}, E = ((2

7 , 5
7), (3

10 , 7
10), (1, 0)) is a Nash equilibrium with

expected social cost 327
70 . So the price of anarchy of the mechanism is greater

than 7
6 . ��

Lemma 8. If c = {m1, m2} satisfies the Specific 2-3-Mirror Property with m1
including (21, 22, 23), then PoA(c) ≥ 5

4 .

Proof. For the described mechanism and for a game with w = {2, 2, 2, 2} we
study the following cases. If m2 includes (23, 21, 22), then there exists the Nash
equilibrium E = ((1

2 , 1
2), (0, 1), (0, 1), (1, 0)) with expected social cost 5. If m2

includes (23, 22, 21), then E = ((1, 0), (1
3 , 2

3), (1
2 , 1

2), (0, 1)) is a Nash equilibrium
with expected social cost 5. For any other possible sequences of 21, 22, 23 in m2,
E = ((0, 1), (1, 0), (1

2 , 1
2), (1, 0)) is a Nash equilibrium with expected social cost

5. This proves the lemma. ��

Lemma 9. If c = {m1, m2} satisfies the Specific 2-3-Mirror Property with m1
including (21, 23, 22), then PoA(c) ≥ 5

4 .

Proof. For the described mechanism and for a game with w = {2, 2, 2, 2} we
study the following cases. If m2 includes (22, 21, 23), then there exists the Nash
equilibrium E = ((1

2 , 1
2), (0, 1), (0, 1), (1, 0)) with expected social cost 5. If m2

includes (22, 23, 21), then E = ((1, 0), (1, 0), (0, 1), (1
2 , 1

2)) is a Nash equilibrium
with expected social cost 5. For any other possible sequences of 21, 22, 23 in m2,
E = ((0, 1), (1, 0), (1, 0), (1

2 , 1
2)) is a Nash equilibrium with expected social cost

5. This proves the lemma. ��

206 K. Kollias

Lemma 10. If c = {m1, m2} satisfies the Specific 2-3-Mirror Property with
m1 including (22, 3, 21), and m2 not including (3, 22, 21) and (3, 21, 22), then
PoA(c) ≥ 6

5 .

Proof. For the described coordination mechanism, if m2 includes (21, 3, 22),
then for a game with w = {2, 2, 2, 3}, E = ((0, 1), (0, 1), (1, 0), (1

2 , 1
2)) is a

Nash equilibrium with expected social cost 6. Obviously, opt(w) = 5. If m2
includes (22, 3, 21), then for a game with w = {2, 2, 2, 3}, the Nash equilibrium
E = ((0, 1), (0, 1), (1, 0), (3

8 , 5
8)) has sc(c; w; E) = 25

4 , while opt(w) = 5. If m2
includes (22, 21, 3), then for a game with set of task lengths w = {2, 2, 3, 3},
either ((0, 1), (1

2 , 1
2), (0, 1), (1, 0)) or ((0, 1), (1

2 , 1
2), (1, 0), (0, 1)) is a Nash equilib-

rium, depending on the sequence of 2, 31, 32 that is included in m2. In both
cases the expected social cost is 6, while the optimal is 5. Finally, if m2 in-
cludes (21, 22, 3), then for a game with w = {2, 2, 2, 3} and under the assump-
tion that m1 does not include (21, 22, 23) or (21, 23, 22), we can confirm that
E = ((0, 1), (1

2 , 1
2), (1, 0), (0, 1)) is a Nash equilibrium with sc(c; w; E) = 6, while

opt(w) = 5. From Lemma 8 and Lemma 9, we get that if the assumption does
not hold, then the price of anarchy of the mechanism is at least 6

5 . This com-
pletes the proof. ��
At this point we have studied mechanisms that satisfy the Specific 2-3-Mirror
Property, for all possible sequences of 21, 22, 3 in m1, and we have proved that
their price of anarchy is at least 7

6 . So, the price of anarchy of all non-preemptive
coordination mechanisms that satisfy the Specific 2-3-Mirror Property is at
least 7

6 .

Theorem 2. If c is a non-preemptive coordination mechanism for m = 2, then
PoA(c) ≥ 7

6 .

Proof. We know that the price of anarchy of non-preemptive coordination mech-
anisms that satisfy the Specific 2-3-Mirror Property is at least 7

6 . We proved it
by presenting several Nash equilibria with tasks of lengths 2 and 3. We can ob-
serve that the same proof can be applied to the other 3 cases of mechanisms that
satisfy the 2-3-Mirror Property. If instead of (22, 21) ∈ m1 and (21, 22) ∈ m2,
we have (21, 22) ∈ m1 and (22, 21) ∈ m2, we adjust the case analysis as fol-
lows. We reverse the “direction” of the tasks with length 2 in all sequences of
the mechanism. For example, if a sequence of a policy in our case analysis is
(. . . , 23, . . . , 21, . . . , 22, . . .), we turn it into (. . . , 21, . . . , 23, . . . , 22, . . .), or if it
is (. . . , 21, . . . , 22, . . .), we turn it into (. . . , 22, . . . , 21, . . .). We also change the
strategies of the tasks with length 2 as follows. The task which is placed last in
the increasing order switches strategies with the task which is placed first, the
task which is placed second to last switches with the task which is placed second
and so on. This produces a case analysis that is symmetric to the one we fol-
lowed previously and proves the same result. The same idea is applied if instead
of (31, 32) ∈ m1 and (32, 31) ∈ m2, we have (32, 31) ∈ m1 and (31, 32) ∈ m2.
This proves that all non-preemptive coordination mechanisms that satisfy the 2-
3-Mirror Property have price of anarchy at least 7

6 . Combining this with Lemma
2 completes the proof. ��

Non-preemptive Coordination Mechanisms 207

Our constant bounds on the price of anarchy of non-preemptive coordination
mechanisms yield an interesting observation, when compared with 4

3 − 1
3m which

is the currently best known price of anarchy and is achieved by the preemptive
All-Decreasing mechanism of [6]. For m > 2, the price of anarchy of every non-
preemptive coordination mechanism is at least 3

2 , thus strictly greater than 4
3 −

1
3m . For the case of m = 2 machines the lower bound is 7

6 and is equal to 4
3 − 1

3m .

Corollary 1. For the price of anarchy of every non-preemptive coordination
mechanism c, for identical machine scheduling,

PoA(c) ≥ 4
3

− 1
3m

.

Thus, we conclude that it is impossible to produce a non-preemptive coordination
mechanism that improves on the currently best known price of anarchy for this
setting. ��

We are able to derive upper bounds for the price of anarchy of the best coordi-
nation mechanism for identical machine scheduling from previous work.

Remark 1. The upper bound for m = 2 machines is given from the Increasing-
Decreasing mechanism of [6] and it is 4

3 . For m > 2, it is trivial to see that if
all machines schedule the tasks in decreasing task length order, then the price
of anarchy is Θ(log m

log log m), so the price of anarchy of the best non-preemptive
coordination mechanism for m > 2 is O(log m

log log m). ��

4 Conclusion and Open Problems

In this paper, we gave a formal definition of non-preemptive coordination mech-
anisms for identical machine scheduling and studied their price of anarchy. We
managed to prove lower bounds for their price of anarchy and presented upper
bounds for the best price of anarchy that such a mechanism can achieve.

The proof of the lower bound for m = 2 machines is based on an extensive
case analysis. This may seem unavoidable, but it remains open whether a more
direct proof exists. Interesting open problems for future research, also include
closing the gap between the upper and lower bounds for the price of anarchy of
non-preemptive coordination mechanisms for identical machine scheduling. The
most important problem of the area is proving upper and lower bounds on the
price of anarchy of the best coordination mechanism for this setting. The known
upper bound is 4

3 − 1
3m and the known lower bound is 1.

References

1. Angel, E., Bampis, E., Pascual, F.: Truthful Algorithms for Scheduling Selfish Tasks
on Parallel Machines. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828.
Springer, Heidelberg (2005)

208 K. Kollias

2. Awerbuch, B., Azar, Y., Richter, Y.: Analysis of worst case Nash equilibria for
restricted assignment (Manuscript 2002)

3. Azar, Y., Jain, K., Mirrokni, V. (Almost) Optimal Coordination Mechanisms for
Unrelated Machine Scheduling. In: SODA (2008)

4. Bagchi, A.: Stackelberg differential games in economic models. Lecture Notes in
Control and Information Sciences, vol. 64. Springer, Heidelberg (1984)

5. Beckmann, M., McGuire, C.B., Winstein, C.B.: Studies in the Economics of Trans-
portation. Yale University Press (1956)

6. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. In:
Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142. Springer, Heidelberg (2004)

7. Cole, R., Dodis, Y., Roughgarden, T.: How much can taxes help selfish routing?
In: ACM EC (2003)

8. Czumaj, A.: Selfish routing on the Internet. In: Handbook of Scheduling: Algo-
rithms, Models, and Performance Analysis (2004)

9. Czumaj, A., Vocking, B.: Tight bounds for worst-case equilibria. In: SODA (2002)
10. Fleischer, L., Jain, K., Mahdian, M.: Tolls for heterogeneous selfish users in multi-

commodity networks and generalized congestion games. In: FOCS (2004)
11. Immorlica, N., Li, L., Mirrokni, V., Schulz, A.: Coordination mechanisms for selfish

scheduling. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828. Springer,
Heidelberg (2005)

12. Korilis, Y.A., Lazar, A.A., Orda, A.: Achieving network optima using Stackelberg
routing strategies. IEEE/ACM Transactions on Networking (1997)

13. Koutsoupias, E.: Coordination mechanisms for congestion games. Sigact News (De-
cember 2004)

14. Koutsoupias, E., Mavronicolas, M., Spirakis, P.: Approximate equilibria and ball
fusion. In: SIROCCO (2002)

15. Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563. Springer, Heidelberg (1999)

16. Mavronicolas, M., Spirakis, P.: The price of selfish routing. In: STOC (2001)
17. Nash, J.F.: Non-cooperative Games. Annals of Mathematics (1951)
18. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Economic Be-

havior 35, 166–196 (2001)
19. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.: Algorithmic Game Theory.

Cambridge University Press, Cambridge (2007)
20. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. The MIT Press, Cam-

bridge (1994)
21. Papadimitriou, C.H.: Algorithms, games, and the Internet. In: STOC (2001)
22. Roughgarden, T.: Stackelberg scheduling strategies. In: STOC (2001)
23. von Stackelberg, H.: Marktform und Gleichgewicht. English translation entitled

The Theory of the Market Economy. Springer, Heidelberg (1934)

Computing Approximate Nash Equilibria

in Network Congestion Games�

Andreas Emil Feldmann1, Heiko Röglin2, and Berthold Vöcking2

1 Institute of Theoretical Computer Science
ETH Zürich, Switzerland

andreas.feldmann@inf.ethz.ch
2 Department of Computer Science

RWTH Aachen, Germany
{roeglin,voecking}@cs.rwth-aachen.de

Abstract. We consider the problem of computing ε-approximate Nash
equilibria in network congestion games. The general problem is known
to be PLS-complete for every ε > 0, but the reductions are based on
artificial and steep delay functions with the property that already two
players using the same resource cause a delay that is significantly larger
than the delay for a single player.

We consider network congestion games with delay functions such as
polynomials, exponential functions, and functions from queuing theory.
We analyse which approximation guarantees can be achieved for such
congestion games by the method of randomised rounding. Our results
show that the success of this method depends on different criteria de-
pending on the class of functions considered. For example, queuing the-
oretical functions admit good approximations if the equilibrium load of
every resource is bounded away appropriately from its capacity.

1 Introduction

In recent years, there has been an increased interest in understanding selfish
routing in large networks like the Internet. Since the Internet is operated by
different economic entities with varying interests, it is natural to model these
entities as selfish agents who are only interested in maximising their own bene-
fit. Congestion games are a classical model for resource allocation among selfish
agents. We consider the special case of network congestion games, in which the
resources are the edges of a graph and every player wants to allocate a path be-
tween her designated source and target node. The delay of an edge increases with
the number of players allocating it, and every player is interested in allocating
a routing path with minimum delay.

Rosenthal [10] shows that congestion games are potential games and hence
they always possess Nash equilibria1 , i.e. allocations of resources from which no
� This work was supported by DFG grant VO 889/2 and by the Ultra High-Speed

Mobile Information and Communication Research Cluster (UMIC) established under
the excellence initiative of the German government.

1 In this paper, the term Nash equilibrium always refers to a pure equilibrium.

A. Shvartsman and P. Felber (Eds.): SIROCCO 2008, LNCS 5058, pp. 209–220, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

210 A.E. Feldmann, H. Röglin, and B. Vöcking

player wants to deviate unilaterally. Fabrikant et al. [5] show that the problem of
computing a pure Nash equilibrium can be phrased as a local search problem be-
longing to the complexity class PLS. They show that it is already PLS-complete
for the special case of network congestion games if different players are allowed
to have different source and target nodes. Ackermann et al. [1] show that this
result can even be extended to network congestion games with linear delay func-
tions. This implies that there is no efficient algorithm for computing pure Nash
equilibria, unless PLS ⊆ P. On the other hand, for symmetric network congestion
games, in which all players have the same source and the same target node, Nash
equilibria can be computed efficiently by solving a min-cost flow problem [5].

In many applications players incur some costs when they change their strategy.
Hence, it is reasonable to assume that a player is only interested in changing her
strategy if this decreases her delay significantly. This assumption leads to the
notion of an ε-approximate Nash equilibrium, which is a state in which no player
can decrease her delay by more than a factor of 1 + ε by unilaterally changing
her strategy. For symmetric congestion games, in which the strategy spaces of
the players coincide, Chien and Sinclair [3] show that ε-approximate equilibria
can be computed by simulating the best response dynamics for a polynomial (in
the number of players and ε−1) number of steps. Unfortunately, the problem of
computing an ε-approximate Nash equilibrium is still PLS-complete for every
constant ε > 0 (and even every polynomial-time computable function ε) for
general congestion games [12] and even for network congestion games2. The
delay functions used in these reductions are quite artificial and steep with the
property that already two players using the same resource cause a delay that
is significantly larger than the delay for a single player. In this paper, we study
natural classes of delay functions such as polynomials and functions from queuing
theory, and we analyse which approximation guarantees can be achieved for these
functions by the method of randomised rounding [9].

1.1 Models and Method

A network congestion game is described by a directed graph G = (V, E) with m
edges, a set N of n players, a pair (si, ti) ∈ V × V of source and target node for
each player i ∈ N , and a non-decreasing delay function de : R≥0 → R≥0 for each
edge e ∈ E. For i ∈ N we denote by Pi the set of all paths from node si to node
ti. Every player i has to choose one path Pi from the set Pi and to allocate all
edges on this path. For a state S = (P1, . . . , Pn) ∈ P1 × . . . × Pn and an edge
e ∈ E, we denote by ne(S) the number of players allocating edge e in state S,
i.e. ne(S) = |{i ∈ N | e ∈ Pi}|. The delay δi(S) to a player i ∈ N in state S is
defined as equal to the delay dPi(S) :=

∑
e∈Pi

de(ne(S)) of the chosen path Pi in
S and every player wants to allocate a path with minimum delay. We say that a
state S is a Nash equilibrium if no player can decrease her delay by changing her
strategy, i.e. if state S′ is obtained from S by letting one player i ∈ N change
her strategy, then the delay δi(S′) is at least as large as the delay δi(S). A state
S is said to be an ε-approximate Nash equilibrium if δi(S) ≤ (1 + ε) · δi(S′) for
2 Alexander Skopalik, personal communication.

Computing Approximate Nash Equilibria in Network Congestion Games 211

every state S′ that is obtained from S by letting one player i ∈ N change her
strategy.

In order to compute approximate Nash equilibria, we use the method of ran-
domised rounding. Therefore, we first relax the network congestion game by
replacing each player by an infinite set of agents, each of which controlling an
infinitesimal amount of flow. To be more precise, we transform the network con-
gestion game into a multi-commodity flow problem and we introduce a flow
demand of 1 that is to be routed from node si to node ti for every player i ∈ N .
A flow vector f ∈ R

|E|
≥0 induces delays on the edges. The delay of edge e ∈ E is

de(f) = de(fe), and the delay on a path P is the sum of the delays of its edges,
i.e. dP (f) =

∑
e∈P de(f). A flow vector f is called a Wardrop equilibrium [13] if

for all commodities i ∈ N and all paths P1, P2 ∈ Pi with fP1 > 0 it holds that
dP1(f) ≤ dP2(f). It is well-known that Wardrop equilibria can be computed in
polynomial time using convex programming [2].

After relaxing the network congestion game and computing a Wardrop equi-
librium f , we compute a decomposition of the flow f into polynomially many
paths. For a commodity i ∈ N let Di ⊆ Pi denote the set of paths used in this
decomposition, and for P ∈ Di, let f i

P denote the flow of commodity i that is
sent along path P . For fixed i the flows f i

P can be interpreted as a probabil-
ity distribution on the set Di. Following the method of randomised rounding,
we choose, according to these probability distributions, independently for each
player i a routing path from Di ⊆ Pi. In the following, we analyse for several
classes of delay functions the approximation guarantee of this approach.

1.2 Our Results

After the randomised rounding the congestion on an edge is a sum of indepen-
dent Bernoulli random variables whose expectation equals the flow on that edge
in the Wardrop equilibrium. By applying Chernoff bounds, we can find for each
edge a small interval such that it is unlikely that any congestion takes a value
outside the corresponding interval. If the delay functions are not too steep in
these intervals, then the delays on the edges after the rounding are neither much
smaller nor much larger than the delays in the Wardrop equilibrium, implying
that the resulting state is an ε-approximate Nash equilibrium for some ε depend-
ing on the steepness of the delay functions. Due to the multiplicative definition
of approximate Nash equilibria, delay functions can be steeper in intervals in
which they take larger values in order to achieve the same ε.

In the literature on selfish routing, it is a common assumption that the delay
functions are polynomials with nonnegative coefficients [4,11]. Hence, we start
our investigations with the question which properties polynomial delay functions
need to satisfy in order to guarantee that randomised rounding yields an ε-
approximate Nash equilibrium with high probability. We have argued that the
delay functions must not grow too fast relative to their values. For polynomials
de(x) =

∑g
j=0 ae

jx
j with ae

j ≥ 0, this implies that the offset ae
0 must not be too

small. If all delay functions are polynomials of some constant degree g and if,
for each edge e ∈ E, the offset ae

0 satisfies

212 A.E. Feldmann, H. Röglin, and B. Vöcking

ae
0 ≥ ((1 + ε)g2 · 6 ln(4m))g

((
√

1 + ε) − 1)2g+1

g∑
j=1

ae
j = Θ

(
lng m

ε2g+1

) g∑
j=1

ae
j ,

then an ε-approximate Nash equilibrium can be computed by randomised round-
ing with high probability in polynomial time. In the above asymptotic estimate
ε tends to zero while m approaches infinity. If, for example, all delay functions
are linear and one wants to obtain an ε-approximate equilibrium for some con-
stant ε > 0, then all delay functions must have the form de(x) = ae

1x+ ae
0 where

ae
0 is sufficiently large in Ω(ae

1 · ln(m)). A lower bound on ae
0 is not unrealistic

since most network links have a non-negligible delay even if they are relatively
uncrowded. For example, in communication networks the offset corresponds to
the sum of packet-propagation delay and packet-processing delay, which should
dominate the packet-queuing delay if an edge is not dramatically overloaded.

The second class that we study are exponential delay functions of the form
de(x) = αe ·exp (x/βe)+γe. We show that for these functions an ε-approximation
can be achieved if βe is lower bounded by some function f(χe, m, ε) growing in
the order of

f(χe, m, ε) ∈ O

(
ln(m) · √

χe

ε

)
,

where χe denotes the load of edge e in the Wardrop equilibrium and hence
corresponds to the expected congestion on e after the randomised rounding. Such
exponential functions grow very slowly as long as less than βe players allocate
the edge, but they start growing rapidly beyond this point. This reflects typical
behaviour in practice, because one often observes that the delay on a network
link grows rather slowly with its congestion until some overload point is reached
after which the quality of the link deteriorates quickly. We show that it is even
possible to replace the exponential function up until βe by a polynomial. To be
precise, we show that if an ε-approximate equilibrium can be computed for two
functions by randomised rounding, then this is also the case for the function that
takes for every input the maximum of these functions.

Finally, we consider functions that arise when using queuing theory for mod-
elling the behaviour of network links. We consider the M/M/1 queuing model
in which there is one queue and the inter-arrival and service times of the packets
are exponentially distributed. A network of such queues constitutes a so-called
Jackson network [6]. We take as delay function the limiting behaviour of the
sojourn time of a packet on the network link. We interpret the congestion on
an edge as the rate of the packet arrival process and we show that, in order to
obtain an ε-approximate equilibrium, it suffices that the rate μe of the service
process (corresponding to the capacity of the edge) is lower bounded by some
function g(χe, m, ε) growing in the order of

g(χe, m, ε) ∈ O

(
χe +

ln(m) · √
χe

ε

)
.

Our result implies that it is sufficient if the equilibrium load χe is bounded away
from the capacity μe by some additive term of order only O(ln(m) · √

μe/ε).

Computing Approximate Nash Equilibria in Network Congestion Games 213

Outline. In the remainder of this paper we first state some preliminaries and
illustrate our approach. After that we give a sufficient condition on the delay
functions that guarantees that randomised rounding computes an ε-approximate
equilibrium in polynomial time with high probability. Then we analyse which
restrictions this condition imposes when applied to polynomial delay functions,
exponential delay functions, and delay functions from queuing theory. Finally,
we prove a theorem for combined delay functions.

2 Preliminaries

The number Ne of players that use an edge e ∈ E after the rounding is a sum of
independent Bernoulli random variables whose expectation χe equals the flow on
e in the Wardrop equilibrium. We can use Chernoff bounds to identify, for each
edge e, an interval [le, ue] such that it is unlikely that Ne takes a value outside
this interval. We choose these intervals such that for x ∈ [le, ue] the delay de(x)
of edge e lies between de(χe)/

√
1 + ε and

√
1 + ε · de(χe).

Lemma 1. If for all e ∈ E it holds that Ne ∈ [le, ue] and de(χe)/
√

1 + ε ≤
de(x) ≤

√
1 + ε · de(χe) for any x ∈ [le, ue], then the resulting state is an ε-

approximate Nash equilibrium.

Proof. Let S denote the state computed by the randomised rounding. Assume
that a path Pi is chosen for player i by the randomised rounding and that P ′

i is
a path with minimum delay after the randomised rounding. From the definition
of a Wardrop equilibrium it follows that in the computed flow the delay Li on
Pi is at most as large as the delay on P ′

i because flow is sent along Pi (otherwise
the probability that path Pi is chosen would equal 0). Since the delay on Pi

increases at most by a factor of
√

1 + ε and the delay on P ′
i decreases at most

by a factor of
√

1 + ε during the randomised rounding, we obtain

dPi(S)
dP ′

i
(S)

≤
√

1 + ε · Li

Li/
√

1 + ε
= 1 + ε ,

which proves the lemma. �	

3 A Sufficient Condition on the Delay Functions

In this section, we present a sufficient condition on the delay functions that guar-
antees that an ε-approximate Nash equilibrium can be computed by randomised
rounding in polynomial time. We will make use of the following Chernoff bounds.

Lemma 2 ([8]). Let X1, . . . , Xn be independent random variables with
Pr [Xi = 1] = pi and Pr [Xi = 0] = 1 − pi for each i ∈ {1, . . . , n} and let the
random variable X be defined as

∑n
i=1 Xi.

– If μ ≥ E [X] and 0 ≤ δ ≤ 1, then Pr [X > (1 + δ) · μ] ≤ exp
(
− δ2μ

3

)
.

– If μ ≤ E [X] and 0 ≤ δ ≤ 1, then Pr [X < (1 − δ) · μ] ≤ exp
(
− δ2μ

3

)
.

214 A.E. Feldmann, H. Röglin, and B. Vöcking

We make two assumptions on the delay functions to avoid case distinctions and
to keep the statement of the next theorem simple. We assume that each delay
function is defined on R and w.l.o.g. we set de(x) = de(0) for x < 0. Additionally,
we assume that the delay function never equals zero, i.e. de(x) > 0 for all x ∈ R.
The latter condition is reasonable since in practice the delay of a network link
never drops to zero.

For an edge e, let χe in the following denote the expected congestion, which
equals the flow on edge e in the Wardrop equilibrium.

Theorem 3. Using the method of randomised rounding, it is possible to com-
pute an ε-approximate Nash equilibrium of a network congestion game with
high probability in polynomial time if for each edge e ∈ E and for all x ∈
[0, max{6 ln(4m), χe +

√
3 ln(4m) · χe}]

de(x)
de(x −

√
6 ln(4m) · x)

≤
√

1 + ε . (1)

Proof. Following the arguments in Section 2, we define an interval Ie := [le, ue]
for each edge e such that, after the randomised rounding, the congestion Ne lies
in this interval with probability at least 1 − 1

2m and such that de(ue)/de(χe) ≤√
1 + ε and de(χe)/de(le) ≤

√
1 + ε. Given these properties, one can easily see

that after the randomised rounding and with probability at least 1/2, Ne ∈ Ie

for all edges e. If this event occurs, then the resulting state is an ε-approximate
Nash equilibrium due to Lemma 1. Since the failure probability is at most 1/2,
repeating the randomised rounding, say, n times independently yields an expo-
nentially small failure probability.

Since we assume de(x) = de(0) for x < 0, we can assume that Inequality (1)
holds for all x ∈ R≤0. For an edge e, we set

Ie = [le, ue] =
[
χe −

√
3 ln(4m) · χe, max{6 ln(4m), χe +

√
3 ln(4m) · χe}

]
.

Since le ≥ χe −
√

6 ln(4m) · χe, Inequality (1) and the monotonicity of de imply

de(χe)
de(le)

≤ de(χe)
de(χe −

√
6 ln(4m) · χe)

≤
√

1 + ε .

If χe ≥ 3 ln(4m), then ue = χe +
√

3 ln(4m) · χe and

de(ue)
de(χe)

≤ de(χe +
√

3 ln(4m) · χe)
de(χe)

≤
√

1 + ε ,

where the last inequality follows from substituting x by x +
√

3 ln(4m) · x in
Inequality (1) and by using the monotonicity of the delay function de. If χe ≤
3 ln(4m), then ue = 6 ln(4m) and

de(ue)
de(χe)

≤ de(6 ln(4m))
de(0)

≤
√

1 + ε ,

Computing Approximate Nash Equilibria in Network Congestion Games 215

where the last inequality follows directly from (1) by setting x = 6 ln(4m).
Altogether, this implies that we have achieved the desired properties that
de(ue)/de(χe) ≤

√
1 + ε and de(χe)/de(le) ≤

√
1 + ε.

It remains to analyse the probability with which the congestion Ne of an edge
e takes on a value in the interval Ie defined above. Since the congestion Ne is
the sum of independent Bernoulli random variables, we can apply the Chernoff
bound stated in Lemma 2, yielding

Pr [Ne < le] =Pr

[
Ne <

(
1 −

√
3 ln(4m)

χe

)
χe

]

≤ exp

⎛
⎝−1

3

(√
3 ln(4m)

χe

)2

χe

⎞
⎠ =

1
4m

.

If χe ≥ 3 ln(4m), then ue = χe +
√

3 ln(4m) · χe, for which we obtain

Pr [Ne > ue] =Pr

[
Ne >

(
1 +

√
3 ln(4m)

χe

)
χe

]

≤ exp

⎛
⎝−1

3

(√
3 ln(4m)

χe

)2

χe

⎞
⎠ =

1
4m

.

If χe ≤ 3 ln(4m), then ue = 6 ln(4m), for which we obtain

Pr [Ne > ue] =Pr [Ne > (1 + 1) · 3 ln(4m)]

≤ exp
(

−1
3

· 3 ln(4m)
)

=
1

4m
.

Altogether, this implies that Pr [Ne /∈ Ie] ≤ Pr [Ne < ue]+Pr [Ne > le] ≤ 1/2m,
as desired. �	

4 Analysis of Classes of Delay Functions

In this section we analyse which conditions Theorem 3 imposes when applied
to polynomial delay functions, exponential delay functions, and delay functions
from queuing theory.

4.1 Polynomial Delay Functions

We consider polynomial delay functions with nonnegative coefficients and con-
stant degree g. That is, the delay function has the form d(x) =

∑g
j=0 ajx

j , where
aj ≥ 0 for j ∈ {0, . . . , g − 1} and ag > 0. Since the coefficients are nonnegative,
the function d is non-decreasing. To fulfil the assumption that the delay function
never equals zero, we also assume that a0 > 0.

216 A.E. Feldmann, H. Röglin, and B. Vöcking

Theorem 4. A polynomial delay function d with degree g and nonnegative co-
efficients satisfies Condition (1) in Theorem 3 for all x ∈ R≥0 if

a0 ≥ ((1 + ε)g2 · 6 ln(4m))g

(
√

1 + ε − 1)2g+1

g∑
j=1

aj = Θ

(
lng m

ε2g+1

) g∑
j=1

ae
j . (2)

Proof. To establish the theorem we show that (2) implies Inequality (1) from
Theorem 3 for any x ≥ 0. In the following, we assume g > 0 because for constant
functions Inequality (1) is trivially satisfied.

In order to show that Inequality (1) is satisfied we use two upper bounds on
the function

f(x) =
d(x)

d(x −
√

6 ln(4m) · x)
,

of which one is monotonically increasing and the other is monotonically decreas-
ing. We show that the upper bounds are chosen such that their minimum is
bounded from above by

√
1 + ε for every x ≥ 0. Since d is non-decreasing and

we assumed that d(x) equals d(0) for any x ≤ 0, we obtain, for every x ≥ 0,

f(x) =
d(x)

d(x −
√

6 ln(4m) · x)
≤ d(x)

d(0)
=

1
a0

d(x) . (3)

The second upper bound on f(x) is presented in the following lemma.

Lemma 5. For all x > g2 · 6 ln(4m),

f(x) ≤ 1

1 − g
√

6 ln(4m)
x

.

Proof. Since the second derivative of any polynomial with nonnegative coeffi-
cients is greater or equal to 0, the delay function is convex. The fact that the
first order Taylor approximation of a convex function is always a global under-
estimator yields, for x ≥ 0,

d(x −
√

6 ln(4m) · x) ≥ d(x) −
√

6 ln(4m) · x · d′(x) . (4)

The lower bound in (4) is positive for x > g2 · 6 ln(4m) because

d(x) −
√

6 ln(4m) · x · d′(x) =
d(x)√

x

(√
x −

√
6 ln(4m) · xd′(x)

d(x)

)

≥ d(x)√
x

(√
x −

√
g2 · 6 ln(4m)

)
> 0 ,

where the second to the last inequality follows because xd′(x)/d(x) is the so-
called elasticity of d, which can readily be seen to be upper bounded by g for
polynomials with degree g and nonnegative coefficients. Hence, for x > g2 ·
6 ln(4m), we obtainc

Computing Approximate Nash Equilibria in Network Congestion Games 217

d(x)
d(x −

√
6 ln(4m) · x)

≤ d(x)
d(x) −

√
6 ln(4m) · x · d′(x)

=
1

1 − xd′(x)
d(x)

√
6 ln(4m)

x

≤ 1

1 − g
√

6 ln(4m)
x

,

which concludes the proof of the lemma. �	

Let xε = (1+ε)g2·6 ln(4m)
((
√

1+ε)−1)2 . We show that, for x ≤ xε, the upper bound in (3) yields

f(x) ≤
√

1 + ε and that, for x ≥ xε, Lemma 5 implies f(x) ≤
√

1 + ε. Since the
upper bound in (3) is non-decreasing, it suffices to observe that d(xε)/a0 ≤√

1 + ε, which follows from

1
a0

d(xε) =
1
a0

g∑
j=0

ajx
j
ε = 1 +

1
a0

g∑
j=1

ajx
j
ε ≤ 1 +

xg
ε

a0

g∑
j=1

aj ≤
√

1 + ε ,

where the last inequality follows from (2) and we used the fact that xε ≥ 1 if
g ≥ 1. Since the upper bound on f(x) given in Lemma 5 is non-increasing and

1

1 − g
√

6 ln(4m)
xε

=
√

1 + ε ,

the theorem follows. �	

4.2 Exponential Delay Functions

The lower bound on a0 in Theorem 4 is determined by the fact that we allow
any input value from the domain R≥0, which is a natural assumption. However,
this means that the bound is too restrictive in the case that the congestion
is large, since then also the interval in which the congestion falls is located
at some point far to the right of the abscissa. From the fact that the upper
bound given in Lemma 5 is decreasing, we can see that in these intervals only
smaller values than needed in order to guarantee the approximation factor ε
are reached. Since this seems to be a typical characteristic of polynomials, this
raises the question whether Theorem 3 can also be applied to delay functions
that grow superpolynomially from a certain point on. The next theorem gives
an affirmative answer.

Theorem 6. A delay function d of the form

d(x) = α · exp
(

x

β

)
+ γ

satisfies Condition (1) in Theorem 3 in some interval [0, u] if α > 0, γ ≥ 0, and
β ≥ 2

√
u · 6 ln(4m)/ ln(1 + ε).

218 A.E. Feldmann, H. Röglin, and B. Vöcking

Proof. We have to show that all functions of the suggested form comply with
(1). This follows because, for x ∈ [0, u],

d(x)
d(x −

√
6 ln(4m) · x)

≤ exp

(√
6 ln(4m) · x

β

)
≤ exp

(
ln(1 + ε)

2

)
=

√
1 + ε ,

which concludes the proof. �	
In Theorem 3 the upper bound ue is set to max{6 ln(4m), χe +

√
3 ln(4m) · χe}.

When substituting u accordingly in the lower bound on β we obtain a bound
f(χe, m, ε) growing in the order of

f(χe, m, ε) ∈ O

(
ln(m) · √

χe

ε

)
.

4.3 Delay Functions from Queuing Theory

In Kendall’s notation [7], we consider the M/M/1 queuing model. This means
that the queue is processed in a first-come first-served manner, the inter-arrival
times at the queue as well as the service times of the packets are exponentially
distributed, and each network link can process only one packet at each point in
time.

The following basic theorem from queuing theory describes the limiting be-
haviour of the sojourn time of a packet on a network link. This is the time that
packet k, where k tends to infinity, spends on that link in total until it arrives
at the next node, i.e. it includes the waiting time in the queue plus the service
time of the packet. In the M/M/1 queuing model, the arrival of jobs is a Pois-
son process whose rate is denoted by λ, and the processing of jobs is a Poisson
process whose rate is denoted by μ. A basic assumption that has to be fulfilled
in order for the theorem to hold is that the occupation rate ρ = λ

μ is strictly
smaller than 1. Otherwise there would be more arrivals than the link can handle,
which would result in an unbounded growth of the queue.

Theorem 7 ([7]). In an M/M/1 queuing system with arrival rate λ, service
rate μ, and in which ρ < 1 the limiting behaviour of the expected sojourn time is

E[S] =
1

μ − λ
.

In the following theorem we interpret the congestion as the arrival rate λ and
we assume that the considered link has a certain service rate μ.

Theorem 8. A delay function d of the form

d(x) =

{
1

μ−x if x < μ

∞ if x ≥ μ

satisfies Condition (1) in Theorem 3 in some interval [0, u] if

μ ≥ u +

√
6 ln(4m)u

(
√

1 + ε) − 1
.

Computing Approximate Nash Equilibria in Network Congestion Games 219

Proof. Since x ≤ u and μ ≥ u we can use the finite part of d(x) to obtain

d(x)
d(x −

√
6 ln(4m) · x)

= 1 +

√
6 ln(4m) · x

μ − x
≤ 1 +

√
6 ln(4m) · u

μ − u
≤

√
1 + ε .

The first inequality follows from the fact that the function is monotonically
increasing in x and x ≤ u, while the second inequality follows directly from the
lower bound on μ. �	

When setting u to ue, analogous to the case of the exponential functions, we
obtain a lower bound g(χe, m, ε) on μ growing in the order of

g(χe, m, ε) ∈ O

(
χe +

ln(m) · √
χe

ε

)
.

5 Combined Delay Functions

In the previous section we applied Theorem 3 to several classes of functions. In
this section we prove a general theorem showing that if two delay functions satisfy
(1) in Theorem 3, then also their maximum satisfies this property. This allows
us to combine different types of delay functions. One weak point of Theorem 6
concerning exponential functions is that it works only for exponential functions
that grow slowly up until 2

√
u · 6 ln(4m)/ ln(1+ε). The following theorem allows

us to combine such an exponential function with a polynomial that satisfies
Theorem 4. If we take the maximum over these two functions, we obtain a
function that grows polynomially until some point and exponentially thereafter.

Theorem 9. Let p and q denote two delay functions that satisfy Condition (1)
in Theorem 3 in some interval x ∈ [0, u]. Then the function

d(x) = max{p(x), q(x)}

also satisfies this condition for x ∈ [0, u].

Proof. Let x ∈ [0, u], x′ = x −
√

6 ln(4m) · x, and without loss of generality
assume d(x) = p(x). Since p satisfies (1), we know that p(x)/p(x′) ≤

√
1 + ε.

Hence, if d(x′) = p(x′), then (1) follows immediately. If, however, d(x′) = q(x′)
then q(x′) ≥ p(x′) and by the definition of d(x) we obtain

d(x)
d(x′)

=
p(x)
q(x′)

≤ p(x)
p(x′)

≤
√

1 + ε .

The last inequality holds again because p satisfies (1). �	

6 Conclusions

In this paper, we have considered network congestion games with delay functions
from several different classes. We have identified properties that delay functions

220 A.E. Feldmann, H. Röglin, and B. Vöcking

from these classes have to satisfy in order to guarantee that an approximate
Nash equilibrium can be computed by randomised rounding in polynomial time.
Additionally, we have presented a method of combining these delay functions.

It remains an interesting open question to explore the limits of approximabil-
ity further and to close the gap between the PLS-completeness results and the
positive results presented in this paper. This could be done by either proving
PLS-completeness of computing approximate equilibria for more natural delay
functions or by extending the positive results to larger classes of functions. We
believe that other techniques than randomised rounding are required for the
latter.

References

1. Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure
on congestion games. In: Proc. of the 47th Ann. IEEE Symp. on Foundations of
Computer Science (FOCS), pp. 613–622 (2006)

2. Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the Economics of Trans-
portation. Yale University Press (1956)

3. Chien, S., Sinclair, A.: Convergence to approximate Nash equilibria in congestion
games. In: Proc. of the 18th Ann. ACM–SIAM Symp. on Discrete Algorithms
(SODA), pp. 169–178 (2007)

4. Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion
games. In: Proc. of the 37th Ann. ACM Symp. on Theory of Computing (STOC),
pp. 67–73 (2005)

5. Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equi-
libria. In: Proc. of the 36th Ann. ACM Symp. on Theory of Computing (STOC),
pp. 604–612 (2004)

6. Jackson, J.: Jobshop-like queueing systems. Management Science 10(1), 131–142
(1963)

7. Kendall, D.G.: Some problems in the theory of queues. Royal Statistic Soci-
ety 13(2), 151–182 (1951)

8. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

9. Raghavan, P., Thompson, C.D.: Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica 7, 365–374 (1987)

10. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int.
Journal of Game Theory 2, 65–67 (1973)

11. Roughgarden, T., Tardos, É.: How bad is selfish routing? Journal of the ACM 49(2),
236–259 (2002)

12. Skopalik, A., Vöcking, B.: Inapproximability of pure Nash equilibria. In: Proc. of
the 40th Ann. ACM Symp. on Theory of Computing (STOC) (to appear, 2008)

13. Wardrop, J.G.: Some theoretical aspects of road traffic research. In: Proc. of the
Institute of Civil Engineers, Pt. II, vol. 1, pp. 325–378 (1952)

On the Performance of Beauquier and Debas’

Self-stabilizing Algorithm for Mutual Exclusion

Viacheslav Chernoy1, Mordechai Shalom2, and Shmuel Zaks1

1 Department of Computer Science, Technion, Haifa, Israel
vchernoy@tx.technion.ac.il, zaks@cs.technion.ac.il
2 TelHai Academic College, Upper Galilee, 12210, Israel

cmshalom@telhai.ac.il

Abstract. In [Dij74] Dijkstra introduced the notion of self-stabilizing
algorithms and presented an algorithm with three states for the problem
of mutual exclusion on a ring of processors. In [BD95] a similar three
state algorithm with an upper bound of 5 3

4n2 +O(n) and a lower bound
of 1

8n2 − O(n) were presented for its stabilization time. For this later
algorithm we prove an upper bound of 1 1

2n2 + O(n), and show a lower
bound of n2 − O(n).

1 Introduction

The notion of self stabilization was introduced by Dijkstra in [Dij74]. He con-
siders a system, consisting of a set of processors, and each running a program
of the form: if condition then statement. A processor is termed privileged if its
condition is satisfied. A scheduler chooses any privileged processor which then
executes its statement (i.e., makes a move); if there are several privileged pro-
cessor, the scheduler chooses any of them. Such a scheduler is termed centralized.
A scheduler that chooses any subset of the privileged processors, which are then
making their moves simultaneously, is termed distributed. Thus, starting from
any initial configuration, we get sequences of moves (termed executions). The
scheduler thus determines all possible executions of the system. A specific sub-
set of the configurations is termed legitimate. The system is self-stabilizing if any
possible execution will eventually get – that is, after a finite number of moves –
only to legitimate configurations. The number of moves from any initial config-
uration until the system stabilizes is often referred to as stabilization time (see,
e.g., [BJM06, CG02, NKM06, TTK00]).

Dijkstra studied in [Dij74] the fundamental problem of mutual exclusion, for
which the subset of legitimate configurations includes the configurations in which
exactly one processor is privileged. n processors are arranged in a ring, so that
each processor can communicate with its two neighbors using a shared mem-
ory, and where not all processors use the same program. Three algorithms were
presented – without correctness or complexity proofs – in which each processor
could be in one of k > n, four and three states, respectively. Most attention
thereafter was devoted to the third algorithm – to which we refer as algorithm

A. Shvartsman and P. Felber (Eds.): SIROCCO 2008, LNCS 5058, pp. 221–233, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

222 V. Chernoy, M. Shalom, and S. Zaks

D in this paper – which is rather non-intuitive, and for which Dijkstra pre-
sented in [Dij86] a proof of correctness (another proof was given in [Kes88], and
a proof of correctness under a distributed scheduler was presented in [BGM89]).
Though while dealing with proofs of correctness one can sometimes get also
complexity results, this was not the case with this proof of [Dij86]. In [CSZ07]
an upper bound of 5 3

4n2 was provided for the stabilization time of algorithm D.
In [BD95] Beauquier and Debas introduced a similar three state algorithm, to
which we refer in this paper as algorithm BD, and they show an upper bound of
5 3

4n2 +O(n) for its stabilization time. They also prove an Ω(n2) lower bound for
the stabilization time of a family of algorithms, which includes both algorithm
D and algorithm BD; for algorithm BD their proof implies a lower bound of
1
8n2 − O(n).

2 Our Contribution

In this work we improve the analysis of algorithm BD. We show an upper bound
of 1 1

2n2 + O(n) for its worst case stabilization time, and, a lower bound of
n2 − O(n). For the upper bound we first present a proof which is similar to the
one of [BD95]. This proof uses the more conventional tool of potential function
that is used in the literature of self-stabilizing algorithms to deal mainly with
the issue of correctness (see, e.g., [Dol00]). In our case the use of this tool is not
straightforward, since the potential function can also increase by some of the
moves. We use this tool to achieve a complexity result; namely, an upper bound
of 2 3

5n2 + O(n). We then use amortized analysis. This more refined technique
enables us to achieve an upper bound of 1 1

2n2+O(n). Since by [CSZ08] algorithm
D has a lower bound of 11

6 n2 , this implies that algorithm BD has a better worst
case performance than algorithm D.

In Section 3 we present algorithm D, discuss some of its properties, and then
present algorithm BD. The lower bound for algorithm BD is discussed in Section
4. In Section 5 we present some properties of the algorithm, which are used in
the upper bound analysis; the discussion using potential function is presented
in Section 6, and the one using amortized analysis is presented in Section 7. We
summarize with some remarks in Section 8. Some of the proofs are omitted or
sketched in this Extended Abstract.

3 Algorithm BD

Since algorithm BD is based on algorithm D, we first present algorithm D. We
assume n processors p0, p1, . . . , pn−1 arranged in a ring; that is, processor pi is
adjacent to p(i−1) mod n and p(i+1) mod n, for every i. Processor pi has a local state
xi ∈ {0, 1, 2}. Two processors – namely, p0 and pn−1 – run special programs,
while all intermediate processors pi, 1 ≤ i ≤ n − 2, run the same program. The
programs of the processors are as follows:

On the Performance of Beauquier and Debas’ Self-stabilizing Algorithm 223

Algorithm D

Program for processor p0:
IF x0 + 1 = x1 THEN

x0 := x0 + 2
END.

Program for processor pi, 1 ≤ i ≤ n − 2:
IF (xi−1 − 1 = xi) OR (xi = xi+1 − 1) THEN

xi := xi + 1
END.

Program for processor pn−1:

IF (xn−2 = xn−1 = x0) OR (xn−2 = xn−1 + 1 = x0) THEN
xn−1 := xn−2 + 1

END.

The legitimate configurations for this problem are those in which exactly one
processor is privileged. The configuration x0 = · · · = xn−1 and x0 = · · · = xi �=
xi+1 = · · · = xn−1 are legitimate. In [Dij86] it was shown that algorithm D self
stabilizes under a centralized scheduler; namely, starting from any initial con-
figuration the system achieves mutual exclusion. We mention the notation that
was used in the proof and needed for our discussion. Given an initial configura-
tion x0, x1, . . . , xn−1, and placing the processors on a line, consider each pair of
neighbors pi−1 and pi, for i = 1, . . . , n − 1 (note pn−1 and p0 are not considered
to be neighbors). In this work we denote left arrow and right arrow, introduced
in [Dij86], by ’<’ and ’>’. Notation xi−1 < xi means xi = (xi−1 + 1) mod 3
and xi−1 > xi means xi = (xi−1 − 1) mod 3. Thus, for each two neighboring
processors with states xi−1 and xi, either xi−1 = xi, or xi−1 < xi, or xi−1 > xi.
For a given configuration C = x0, x1, . . . , xn−1, Dijkstra introduces the function

f(C) = #left arrows + 2#right arrows . (1)

Example 1. For n = 7, a possible configuration C is x0 = 1, x1 = 1, x2 = 0, x3 =
1, x4 = 2, x5 = 2, x6 = 0. This configuration is denoted as 1 = 1 > 0 < 1
< 2 = 2 < 0. Then, we have f(C) = 3 + 2 × 1 = 4.

There are eight possible types of moves of the system: one possible move for
processor p0, five moves for any intermediate processor pi, 0 < i < n − 1, and
two moves for pn−1. These possibilities are summarized in Table 1.

In this table C1 and C2 denote the configurations before and after the move,
respectively, and Δf = f(C2)− f(C1). In the table we show only the local parts
of these configurations. For example, in the first row, p0 is privileged; therefore
in C1 we have x0 < x1, and in C2 x0 > x1, and since one left arrow is replaced
by a right arrow, Δf = f(C2) − f(C1) = 1.

We now present algorithm BD. It is similar to algorithm D with the following
changes: moves of type 0 depend on processor pn−1 (and not only on p1), moves 6
and 7 (of pn−1) are more complicated, and only one new arrow may be created by
a move of type 72 (see Table 2). There is no change in the moves of intermediate
processors pi.

224 V. Chernoy, M. Shalom, and S. Zaks

Table 1. Dijkstra’s algorithm

Type Proc. C1 C2 Δf
0 p0 x0 < x1 x0 > x1 +1

1 pi xi−1 > xi = xi+1 xi−1 = xi > xi+1 0

2 pi xi−1 = xi < xi+1 xi−1 < xi = xi+1 0

3 pi xi−1 > xi < xi+1 xi−1 = xi = xi+1 −3

4 pi xi−1 > xi > xi+1 xi−1 = xi < xi+1 −3

5 pi xi−1 < xi < xi+1 xi−1 > xi = xi+1 0

6 pn−1 xn−2 > xn−1 < x0 xn−2 < xn−1 −1

7 pn−1 xn−2 = xn−1 = x0 xn−2 < xn−1 +1

Algorithm BD

Program for processor p0:
IF (x0 + 1 = x1) AND (x0 = xn−1) THEN

x0 := x0 − 1
END.

Program for processor pi, 1 ≤ i ≤ n − 2:
IF (xi + 1 = xi−1) OR (xi + 1 = xi+1) THEN

xi := xi + 1
END.

Program for processor pn−1:

IF (xn−1 = x0 + 2) AND (xn−1 �= xn−2) THEN
xn−1 := xn−1 + 2

ELSIF xn−1 = x0 THEN
xn−1 := xn−1 + 1

END.

For describing a relation between states of processors p0 and pn−1, we define
the function f̂ for any configuration C as follows:

f̂(C) = f(C) mod 3 . (2)

Table 2. Beauquier and Debas’ algorithm

Type Proc. C1 C2 Δf̂ Δf Δh
0 p0 x0 < x1, f̂ = 1 x0 > x1 +1 +1 n − 2

1 pi xi−1 > xi = xi+1 xi−1 = xi > xi+1 0 0 −1

2 pi xi−1 = xi < xi+1 xi−1 < xi = xi+1 0 0 −1

3 pi xi−1 > xi < xi+1 xi−1 = xi = xi+1 0 −3 −(n + 1)

4 pi xi−1 > xi > xi+1 xi−1 = xi < xi+1 0 −3 3i − 2n + 2 ≤ n − 4

5 pi xi−1 < xi < xi+1 xi−1 > xi = xi+1 0 0 n − 3i − 1 ≤ n − 4

61 pn−1 xn−2 > xn−1, f̂ = 2 xn−2 < xn−1 −1 −1 n − 2

62 pn−1 xn−2 < xn−1, f̂ = 2 xn−2 = xn−1 −1 −1 −(n − 1)

71 pn−1 xn−2 < xn−1, f̂ = 0 xn−2 > xn−1 +1 +1 −(n − 2)

72 pn−1 xn−2 = xn−1, f̂ = 0 xn−2 < xn−1 +1 +1 n − 1

73 pn−1 xn−2 > xn−1, f̂ = 0 xn−2 = xn−1 +1 −2 −1

On the Performance of Beauquier and Debas’ Self-stabilizing Algorithm 225

By (1) and the definition of arrows we get f̂(C) ≡ (xn−1 − x0) (mod 3).
The possible types of moves of BD are summarized in Table 2.
In this table we also include the changes of the function f̂ (note that f̂(C) = 0

iff xn−1 = x0) and the function h (that will be introduced in Section 6) implied
by each move.

Intuitively, every arrow is related to a token, which is transferred until achiev-
ing p0 or pn−1 or colliding with another token. As opposed to algorithm D, algo-
rithm BD may generate at most one new token (move 72) during any execution,
which results in its having a better stabilization time.

4 Lower Bound

In this section we introduce the lower bound for algorithm BD. We denote con-
figurations by regular expressions over {<, >, =}. For example,

[
<3==<>>

]
and

[
<3=2<>2

]
are possible notations for the configuration x0 < x1 < x2 <

x3 = x4 = x5 < x6 > x7 > x8. Note that this notation does not loose relevant
information, since the behavior of the algorithm is dictated by the arrows (see
Table 2). We now present the lower bound:

Theorem 1. The stabilization time of algorithm BD is at least (n − 4)2.

Proof. Assume n = 3k + 1. For any 0 ≤ i ≤ k, let Ci :=
[
=3i<3k−3i

]
. In

particular, C0 is
[
<3k

]
and Ck−1 is

[
=3k−3<3

]
. We show an execution with

2 × 3i + 1 + 2 × (3i + 1) + 1 + 2 × (3i + 2) + 1 = 18i + 9 moves, starting from Ci

and ending at Ci+1 (the example contains only moves of types 1, 2, 4 and 5).

[
=3i<3k−3i

]
, or:[

=3i<<<<<3k−3i−4
]
, after 2 × 3i steps of type 2:[

<<=3i<<<3k−3i−4
]
, after 1 step of type 5:[

>==3i<<<3k−3i−4
]
, after 2 × (3i + 1) steps of type 2:[

><<==3i<3k−3i−4
]
, after 1 step of type 5:[

>>===3i<3k−3i−4
]
, after 2 × (3i + 2) steps of type 1:[

===3i>><3k−3i−4
]
, after 1 step of type 4:[

===3i=<<3k−3i−4
]
, or:

[
=3(i+1)<3k−3(i+1)

]

Then, starting from C0 we get an execution that reaches Ck−1 in
∑k−2

i=0 (18i+
9) = 9(k − 1)2 moves. We substitute k = 1

3 (n − 1) to get (n − 4)2. ��

5 Properties of Algorithm BD

In this section we derive some properties of algorithm BD. They refine the ones
in [BD95], and enable us to improve the analysis of the upper bound in the next
two sections. By inspection of Table 2 we have:

226 V. Chernoy, M. Shalom, and S. Zaks

Observation 1. For any configuration C:

1. Any move of processor pi, 1 ≤ i ≤ n − 2, does not change the function f̂ ,
i.e., Δf̂ = 0.

2. p0 is privileged according to case 0 iff f̂(C) = 1 and x0 < x1.
3. pn−1 is privileged according to case 7 iff f̂(C) = 0.
4. pn−1 is privileged according to case 6 iff f̂(C) = 2 and xn−2 �= xn−1.
5. After processor p0 makes a move (case 0), we reach a configuration C such

that f̂(C) = 2.
6. After processor pn−1 makes a move (cases 6 or 7), we reach a configuration

C such that f̂(C) = 1.

By [BD95] it follows that any execution of algorithm BD self-stabilizes. Given
any execution or a segment of execution e before stabilization, ti(e) (or simply
ti) denotes the number of type i moves in e. Note that i may also indicate a
sub-type, e.g. the number of moves of type 61 is t61 (see Table 2). We denote by
a the number of arrows in the initial configuration of e. Moves of types 3, 4, 5,
62 and 73 are termed collisions.

Intuitively, an execution with the maximal number of moves will not contain
moves of type 3, since such a collision decreases the number of arrows by 2 while
other collisions (i.e., moves of type 4,5) decrease it only by 1. The following key
lemma allows us to focus on executions e for which t3(e) = 0, and is the basis
for the amortized analysis in Section 7:

Lemma 1. For every execution e, there is an execution e′ containing no moves
of type 3, such that |e′| ≥ |e|.
Proof (sketch). The proof is by induction on t3(e). At each inductive step we
replace a segment of e by another segment with similar length.

Base: t3(e) = 0. In this case e′ = e satisfies the claim.
Step: If t3(e) > 0, then there is at least one type 3 move in e. Let pi be the

processor that made this move. Immediately after this move pi is disabled. As
there are no deadlocks, pi will be re-enabled again. This happens at the first time
there is an > (resp. <) arrow at the left (resp. right) of pi. This may happen in
either of type 1, 2, 72 moves. For the discussion we use the following notations.
When describing executions or segments of them, we denote one move of type t

by
(t)→, and a series of x moves x→. In addition, when describing configurations we

use regular expressions as defined in Section 4 and we use the wildcard character
′?′ to denote any one of {=, <, >}.
– A type 1 or type 2 move: We describe the case of a type 1 move. The

other case is symmetric. In this case, we have in e a segment of the form:[
?i ><?n−3−i

]
(3)→

[
?i ==?n−3−i

]
x→

[
?i−1 >==?n−3−i

]
1→

[
?i−1 =>=?n−3−i

]

Consider the execution e′′ which is obtained by replacing the above segment
by the following one:[

?i ><?n−3−i
]

x→
[
?i−1 >><?n−3−i

]
(4)→

[
?i−1 =<<?n−3−i

]
(5)→

[
?i−1 =>=?n−3−i

]

On the Performance of Beauquier and Debas’ Self-stabilizing Algorithm 227

The length of both segments is x+2, thus |e′′| = |e|. Clearly t3(e′′) < t3(e)).
By the induction hypothesis there is an execution e′ such that t3(e′) = 0 and
|e′| ≥ |e′′| = |e|, as required.

– A type 72 move: In this case, we have in e a segment of the following form:
[
?n−3 ><

] (3)→
[
?n−3 ==

] x→ f̂ =0
[
?n−3 ==

] (72)→ f̂ =1
[
?n−3 =<

]
Consider the execution e′′ which is obtained by replacing the above segment
by the following one:
[
?n−3 ><

] x→ f̂ = 0,
[
?n−3 ><

] (71)→ f̂ = 1,
[
?n−3 >>

] (4)→ f̂ = 1,
[
?n−3 =<

]
We proceed exactly as in the first case.

��
In particular for any worst case execution e there is an execution e′ with the
same number of moves. Therefore we assume without loss of generality that a
worst case execution e does not contain type 3 moves.

The following lemma presents the main properties of the algorithm.

Lemma 2. Let e be an execution until stabilization, such that t3(e) = 0.

1. A move of types 7 may occur at most once. This can happen only before any
move of type 0 or 6.

2. Between any two successive moves of type 0, there is exactly one move of
type 6.

3. Between any two successive moves of type 6, there is exactly one move of
type 0.

4. Between any two successive moves of type 0, there is at least one move of
type 4.

5. Between any two successive moves of type 61, there is at least one move of
type 5 or 62.

6. a + t72 − t73 − t4 − t5 − t62 ≥ 0.

Proof (sketch).

– Cases 1, 2 and 3 follow from Observation 1.
– Case 4: the arrow ’>’ that is created in the first type 0 move must disappear,

in order to allow to an arrow ’<’ to reach the left end and to initiate the
next type 0 move.

– Case 5 is similar to case 4.
– Case 6 holds since the number of arrows is always non-negative.

��
We summarize all constrains in the following system:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t71 + t72 + t73 ≤ 1
t0 = t61 + t62

t0 ≤ t4
t61 ≤ t5 + t62

t4 + t5 + t62 + t73 ≤ a + t72

a ≤ n

228 V. Chernoy, M. Shalom, and S. Zaks

From the above we derive:

Lemma 3. The following conditions hold:

1. t4 + t5 + t62 + t73 ≤ a + 1.
2. t0 + t61 − t62 + t4 + t5 ≤ 2(a + 1).
3. t0 + t4 + t5 + t61 + t62 + t71 + t72 + t73 = O(n).

Proof.

1. t4 + t5 + t62 + t73 ≤ a + t72 ≤ a + 1.
2. t0 + t61 − t62 + t4 + t5 ≤ 2(t4 + t5) ≤ 2(a + 1).
3. t0 + t4 + t5 + t61 + t62 + t71 + t72 + t73 ≤ 2(t4 + t5 + t62)+1 ≤ 2a+3 = O(n).

��

Using the inequalities of Lemma 3, we now proceed in two ways to derive the
upper bound. We first use the tool of potential function (Section 6), and we then
use amortized analysis which enables us to track the route followed by individual
arrows, and thus achieve a tighter bound (Section 7).

6 Upper Bound Using a Potential Function

We now introduce the function h. This function decreases by 1 during each move
of types 1, 2 or 73 and decreases by (n+1), (n−1) and (n−2) during each move
of types 3, 62, 71 correspondingly. Unfortunately, moves of other types increase
the function. By combining results of the previous section and the properties
of h we manage to derive the upper bound on the number of moves to reach
stabilization. We note that in [BD95] the same technique of potential function
is used to derive the upper bound. The difference between the analyzes is that
we use a simpler potential function, and a more refined analysis, to get a better
upper bound (and, in addition, we use the technique of amortized analysis (in
the next section) that allows to get an even better bound).

Given a configuration C = x0, x1, . . . , xn−1, we define the function h(C) as
follows:

h(C) =
∑

1 ≤ i ≤ n − 1
xi−1 < xi

i +
∑

1 ≤ i ≤ n − 1
xi−1 > xi

(n − i) (3)

The changes of the function h in each of the eleven possible types of moves
are summarized in Table 2.

Example 2. Simple properties of h:

– h
([

=n−1
])

= 0.
– h

([
=i−1<=n−1−i

])
= i.

– h
([

=n−i−1>=i−1
])

= i.
– h

([
<=n−3>

])
= 2.

On the Performance of Beauquier and Debas’ Self-stabilizing Algorithm 229

– h
([

<n−1
])

=
∑n−1

i=1 i = 1
2n(n − 1).

– h
([

>
n−1
2 �<�n−1

2

])

= 3
4n2 − n + O(1).

These changes can be obtained by using the examples or directly from the defini-
tion of h. For example, for a move of type 0 we get that Δh = (n−1)−(1) = n−2,
and for a move of type 3 Δh = (0) − ((i + 1) + (n − i)) = −(n + 1).

Lemma 4. For any configuration C, 0 ≤ h(C) ≤ 3
4n2.

Proof. Omitted. ��

Theorem 2. Starting from any initial configuration, the stabilization time of
algorithm BD is bounded by 2 3

4n2 + O(n).

Proof. We denote by Δhi the changes of h in a move of type i. Let C be the
initial configuration of e. Considering the last (legitimate) configuration C′ of
e, by Lemma 4 we get h(C′) = h(C) +

∑
i(ti · Δhi) ≥ 0. Therefore t1 + t2 ≤

h(C) +
∑

i�=1,2(ti · Δhi) ≤ h(C) + (t0 − t3 + t4 + t5 + t61 − t62 + t7)(n − 1).
Recalling t7 ≤ 1 and applying Lemmas 3 (part 2) and 4, we get t1 + t2 ≤
3
4n2 + 2n(n − 1) + O(n) = 2 3

4n2 + O(n). By Lemma 3 (part 3), the number of
moves of other types is O(n). This completes the proof. ��

7 Upper Bound Using Amortized Analysis

In this section we present the upper bound of 1 1
2n2 + O(n). Our proof consists

of the following steps: we first explore the types of collisions that could occur
in an execution (Lemma 6), then we bound the weight of each type of collision
(Lemma 7), and finally summing up these weights for all collisions we get the
upper bound (Theorem 3).

Assume we are given an execution with no moves of type 3 until stabilization,
whose existence is guaranteed by Lemma 1. We start by introducing the term
life-cycle of an arrow. Informally, a life-cycle of an arrow is the sequence of moves
from the moment it appears in this execution until the moment it disappears.
The life-cycle of an arrow appearing in the initial configuration starts at that
configuration. We say that a move of type 72 creates an arrow and in this way
starts its life-cycle. A move of type 61 (resp. 71) destroys one arrow ending its
life-cycle. A move of type 4 (resp. 5) destroys two arrows, ending their life-cycles,
and creates a new arrow, thus starting its life-cycle. Other moves only change
the direction of the arrow and do not terminate their life-cycle.

Next we introduce the term mark. If an arrow is created by a move 72 (resp.
4, 5), it is marked by 7 (resp. 4,5): ’<7’ (resp ’<4’, ’>5’). If an arrow makes a
move of type 0 (resp. 61, 71) it gets an additional mark 0 (resp. 6, 7).

That allow us to introduce the type of an arrow – according to marks the arrow
collected during its life. We define the weight of an arrow to be the number of
moves of types 1 and 2 the arrow makes during its life-cycle.

230 V. Chernoy, M. Shalom, and S. Zaks

Example 3. An arrow of type <7 starts its life-cycle being created by a move
of type 72, then it makes some, possibly 0, number of moves of type 2 and is
destroyed. The weight of any arrow of this type is bounded by n

Example 4. An arrow of type >40 starts its life-cycle being created by a move of
type 4, then it reaches processor p0 and makes a move of type 0. After making
some, possibly 0, moves of type 1, it is destroyed. Its weight is bounded by 2n.

Example 5. An arrow of type <76 starts its life-cycle in initial configuration in
position n − 1. Then processor pn−1 makes a move of types 71 follows by 61.
Then the arrow possibly makes some moves of type 2. Clearly, at most one arrow
of this type can be in an execution. Its weight is bounded by n.

The various types of arrows are summarized in Table 3. Collisions of cases 1-4
and 11-12 (resp. 5-10; 13-16; 17) are moves of type 4 (resp. 5; 62; 73). Amount
’*’ means that the exact number of such arrows (collisions) are unknown.

Table 3. Types of arrows

Case Arrow Weight Amount
1 > >5 n ∗
2 >0 2n 1
3 >40 2n ∗
4 < <4 n ∗
5 <7 n 1
6 <6 2n 1
7 <56 2n ∗
8 >7 >47 0 1
9 <76 <476 n 1

Table 4. Types of collisions

Case Collision Weight Amount
1 >> >>5 >5> >5>5 2n ∗
2 >0> 2n 1
3 >0>5 3n 1

4 >40> >40>5 3n ∗
5 << <4< <<4 <4<4 2n ∗
6 <<6 2n 1
7 <4<6 3n 1

8 <<56 <4<56 3n ∗
9 <<7 <4<7 2n 1

10 <<76 <4<76 <<476 <4<476 2n 1

11 >>7 >>47 >5>7 >5>47 n 1
12 >0>7 >0>47 >40>7 >40>47 2n 1

13 < <7 0 1
14 <4 0 ∗
15 <6 n 1
16 <56 n ∗
17 > >5 n 1

We now conclude the following:

Lemma 5. For any execution e not achieving self-stabilization, the following
true:

– Only arrows of types >, >5, >0, >40, >7, >47, <, <4, <7, <6, <56, <76,
<476 can appear in e.

– The weight of an arrow of any type is bounded by 2n.
– The number of arrows of types >0, >7, >47, <7, <6, <76, <476 is O(1).

Proof. Omitted. ��

On the Performance of Beauquier and Debas’ Self-stabilizing Algorithm 231

Consider a collision (a move of types 4, 5, 62, 73). We define the weight of a
collision to be the sum of weights of the arrows destroyed in the collision. Note
that a move of types 4 and 5 destroys two arrows while a move of types 62 and
73 destroys only one. Clearly, the weight of any collision is bounded by 4n. In
Lemma 7 we provide the better bound on the weight of a collision.

The types of arrows destroyed in the collision define the type of the collision.
As we interested in O(n2) bound we may ignore O(1) collisions of any types.
Therefor, without loss of generality, we consider collisions of types >, >5, >40,
<, <4, <56 only (the number of other collisions is O(1)). For details see Table 4.

Lemma 6. The only collisions of types >>, >>5, >5>, >5>5, >40>, >40>5,
<<, <<4, <4<, <4<4, <56<, <4>56, <, <4, <56, >, >5 can occur in an
execution.

Proof. Omitted. ��

Clearly, the number of moves of both types 1 and 2 made by all arrows until
stabilization is equal to the sum of weights of all collisions occurred in the exe-
cution. Our purpose is to estimate the last. Consider the ith collision, for some
i ≥ 1. Denote by a(i) the number of arrows in the configuration in which the
collision i occurs. Recall that a denotes the number of arrows in the initial con-
figuration. Denote by t7(i) ∈ {0, 1} the number of moves of type 72 made before
the collision i occurs. Clearly, a − i + t7(i) = a(i) (pay attention: t3 = 0). The
following key lemma is the main tool for estimating the weight of a collision.

Lemma 7. Given an execution until self-stabilization. Consider the ith collision
in the execution. The weight of the collision is bounded by max {3n, 3(n − a + i)}.

Proof (sketch). The initial configuration has a arrows and n − a empty places
where arrows are allowed to move. After i collisions, the number of empty place
is n − a(i) = n − a + i − t7(i). Assuming first that t7(i) = 0 and noting that
only one of two arrows, participating in the collision, could change the direction
during its life-cycle, we conclude that the weight of the collision is bounded by
3(n − a(i)) = 3(n − a + i).

Assuming t7(i) = 1, we note that the same bound is true for this case too. ��

Using the last lemma we compute the tighter bound on the number of moves
until stabilization.

Theorem 3. The number of moves until stabilization is bounded by 1 1
2n2+O(n).

Proof (sketch). Note that Lemma 3 bounds by O(n) the number of moves of all
types except of types 1 and 2. The number of these moves we bound as follows.
Applying Lemmas 7 and 3 we get

t1 + t2 ≤
t4+t5+t62+t73∑

i=1

min {3(n − a + i), 3n} ≤
a+1∑
i=1

min {3(n − a + i), 3n} .

232 V. Chernoy, M. Shalom, and S. Zaks

Simplifying we derive

≤
a∑

i=1

3(n − a + i) + 3n = 3an − 1
1
2
a2 + 1

1
2
a + 3n.

Since 0 < a < n it follows that t1 + t2 ≤ 1 1
2n2 + O(n) . ��

8 Conclusion and Remarks

In this paper we proved an upper bound of 11
2n2 + O(n) and a lower bound of

n2 − O(n) for algorithm BD, both of which improving the results presented in
[BD95] for a centralized scheduler. In the full version of the paper we will discuss
the extension of the results to the distributed scheduler case.

We also note that in Section 7 and specifically in Lemma 7, the analysis might
be refined using more information from Table 4 – specifically, note that the
number of collisions having weight at most 2n is not negligible – thus resulting
in a better upper bound.

References

[BD95] Beauquier, J., Debas, O.: An optimal self-stabilizing algorithm for mutual
exclusion on bidirectional non uniform rings. In: Proceedings of the Second
Workshop on Self-Stabilizing Systems, pp. 17.1–17.13 (1995)

[BGM89] Burns, J.E., Gouda, M.G., Miller, R.E.: On relaxing interleaving assump-
tions. In: Proceedings of the MCC Workshop on Self-Stabilizing Systems,
MCC Technical Report No. STP-379-89 (1989)

[BJM06] Beauquier, J., Johnen, C., Messika, S.: Brief announcement: Computing au-
tomatically the stabilization time against the worst and the best schedules.
In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 543–547. Springer,
Heidelberg (2006)

[CG02] Cobb, J.A., Gouda, M.G.: Stabilization of general loop-free routing. Journal
of Parallel and Distributed Computing 62(5), 922–944 (2002)

[CSZ07] Chernoy, V., Shalom, M., Zaks, S.: On the performance of Dijkstra’s third
self-stabilizing algorithm for mutual exclusion. In: 9th International Sym-
posium on Stabilization, Safety, and Security of Distributed Systems (SSS),
Paris, November 2007, pp. 114–123 (2007)

[CSZ08] Chernoy, V., Shalom, M., Zaks, S.: A self-stabilizing algorithm with tight
bounds for mutual exclusion on a ring (submitted for publication) (2008)

[Dij74] Dijkstra, E.W.: Self stabilizing systems in spite of distributed control. Com-
munications of the Association of the Computing Machinery 17(11), 643–644
(1974)

[Dij86] Dijkstra, E.W.: A belated proof of self-stabilization. Distributed Comput-
ing 1, 5–6 (1986)

[Dol00] Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
[Kes88] Kessels, J.L.W.: An exercise in proving self-stabilization with a variant func-

tion. Information Processing Letters 29, 39–42 (1988)

On the Performance of Beauquier and Debas’ Self-stabilizing Algorithm 233

[NKM06] Nakaminami, Y., Kakugawa, H., Masuzawa, T.: An advanced performance
analysis of self-stabilizing protocols: stabilization time with transient faults
during convergence. In: 20th International Parallel and Distributed Process-
ing Symposium (IPDPS 2006), Rhodes Island, Greece, April 25-29 (2006)

[TTK00] Tsuchiya, T., Tokuda, Y., Kikuno, T.: Computing the stabilization times of
self-stabilizing systems. IEICE Transactions on Fundamentals of Electronic
Communications and Computer Sciences E83A(11), 2245–2252 (2000)

Self-stabilizing Cuts in Synchronous Networks

Thomas Sauerwald1,� and Dirk Sudholt2,��

1 Dept. of CS, University of Paderborn, Paderborn, Germany
sauerwal@upb.de

2 Dept. of CS, Dortmund University of Technology, Dortmund, Germany
dirk.sudholt@cs.uni-dortmund.de

Abstract. Consider a synchronized distributed system where each node
can only observe the state of its neighbors. Such a system is called self-
stabilizing if it reaches a stable global state in a finite number of rounds.
Allowing two different states for each node induces a cut in the net-
work graph. In each round, every node decides whether it is (locally)
satisfied with the current cut. Afterwards all unsatisfied nodes change
sides independently with a fixed probability p. Using different notions
of satisfaction enables the computation of maximal and minimal cuts,
respectively. We analyze the expected time until such cuts are reached
on several graph classes and consider the impact of the parameter p and
the initial cut.

1 Introduction

1.1 Motivation

In the language of distributed computing a system is called self-stabilizing if it
reaches a global state with some desired property in finite time, regardless of
the initialization. This implies that the system is able to stabilize even in the
presence of faults [2,4]. Such self-stabilizing processes have been investigated for
various graph problems like maximal matchings [11,15], independent sets [8], and
domination [6]. A lot of research effort has been spent on self-stabilizing vertex
coloring algorithms [7,9,12,13,14], motivated by code assignment problems in
wireless networks.

In this work we consider self-stabilizing algorithms for maximal and minimal
cuts in a synchronized distributed system. The network is given by an undirected
graph G = (V, E). As we do not make use of IDs for the nodes, we assume that
the network is anonymous. However, we assume that there is a central clock
synchronization. In each round every node has one out of two possible states,
which induces a cut of the network. In every round every node decides whether it
is satisfied with the current cut, judging from a local perspective, i. e., the state
� Supported by the German Science Foundation (DFG) Research Training Group

GK-693 of the Paderborn Institute for Scientific Computation (PaSCo).
�� Supported by the German Science Foundation (DFG) as a part of the Collaborative

Research Center “Computational Intelligence” (SFB 531).

A. Shvartsman and P. Felber (Eds.): SIROCCO 2008, LNCS 5058, pp. 234–246, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Self-stabilizing Cuts in Synchronous Networks 235

of its neighbors. Unsatisfied nodes strive to (locally) improve the cut by changing
sides. In order to break symmetries, we investigate a randomized algorithm where
in each round every unsatisfied node changes sides with a fixed probability p.

By different notions of satisfaction different types of cuts can be produced.
We say that a node is max-satisfied if at least half of its neighbors are on the
other side of the cut. If all nodes are max-satisfied, the current cut cannot be
increased by flipping a single node. Hence the current cut is maximal, i. e., locally
optimal w. r. t. the cut size (as opposed to maximum cuts representing global op-
tima). From a global perspective, the system may be viewed as a self-stabilizing
algorithm for maximal cuts.

The system may also be regarded from a local perspective. For example, the
problem can be seen as a relaxed code assignment problem where nodes are
forced to use different codes to communicate. In a cut where all nodes are max-
satisfied every node can communicate with a majority of neighbors, even if only
two codes are available. There are also connections to game theory where the
nodes represent players competing for services. If some players asking for the
same service are close to each other (are connected by an edge), then the benefit
of this service has to be split among all these players.

On the other hand, a node is min-satisfied if at least half of its neighbors
are on the same side of the cut. This notion of satisfaction results in minimal
cuts (as opposed to minimum cuts). Finding a minimum cut in a graph is an
important task in computer science with applications to clustering, chip design,
and network reliability. In our distributed and anonymous setting, however, we
are content with minimal cuts.

Using the above-mentioned two notions of satisfaction, we show that the sys-
tem self-stabilizes and then focus on the expected time until a stable cut is
obtained. We prove for both satisfaction models that planar graphs stabilize in
linear time for appropriate constant values of p. The choice of p is crucial since
using constant p on dense graphs results in exponential stabilization times for
the max-satisfaction model, with high probability. Finally, we investigate classes
of sparse graphs like rings, torus graphs, and hypercubes. On rings the expected
stabilization time is logarithmic for constant p. For some torus graphs, the choice
of the initial cut decides between linear and logarithmic expected stabilization
times.

1.2 Related Work

Our work is related to the design of distributed approximation algorithms [5]
since our algorithm approximates maximum and minimum cuts. This is espe-
cially interesting as Elkin [5] concludes in his survey that the distributed approx-
imability of maximum and minimum cut is still unsolved. However, the focus on
this work is different; due to the restrictions in our distributed model we only
settle for maximal and minimal cuts, i. e., local optima.

Gradinariu and Tixeuil [9] investigated a self-stabilizing coloring algorithms
that is similar to our model. In their work, a node agrees with its neighborhood if
it is colored with the maximal color value that is not used by any of its neighbors.

236 T. Sauerwald and D. Sudholt

In their distributed setting a node that disagrees with its neighborhood changes
its color with probability 1/2. It is shown that this strategy stabilizes with a
(B + 1)-coloring in expected time O((B − 1) log n) where B is a bound on the
maximal degree and n is the number of nodes. This work loosely relates to
our work as every 2-coloring represents a maximum cut. However, as typically
B + 1 > 2 colors may be used, vertex coloring and cut problems are quite
different.

1.3 Our Results

After presenting necessary definitions in Section 2, we start with general upper
bounds for the expected stabilization time in both min-satisfaction and max-
satisfaction models in Section 3. In particular, we derive an upper bound O(n/p)
for all planar graphs with n nodes if p ≤ 1/12. This bound suggests to choose p
large, but for dense graphs this may lead to exponential stabilization times. Sec-
tion 4 presents such examples for the max-satisfaction process on the complete
graph Kn and dense random graphs in the G(n, 1/2)-model. On Kn the expected
stabilization time is exponential for p = 1/2, but polynomial if p = O((log n)/n)
(and p ≥ n−O(1)). For sparse graphs the choice of p is less important. As shown
in Section 5, rings stabilize in expected time O((log n)/p) if p = 1 − Ω(1).
Moreover, the investigation of torus graphs shows that the initialization can be
crucial. With a worst-case initialization torus graphs stabilize in expected time
Ω(n/p), while random initialization yields a bound of O((log n)/p2) on certain
torus graphs. Section 6 finishes with conclusions and remarks on future work.
Due to space limitations proofs from Section 4 are omitted. An extended version
with these proofs is available as technical report [16].

2 Definitions

Let G = (V, E) be an undirected graph. For U, W ⊆ V let E(U, W) be the set of
all edges between U and W and E(U) = E(U, U). For v ∈ V let deg(v) denote
the degree of v. Let Δ(G) = maxv∈V deg(v) be the maximum degree in G and
a(G) = maxU⊆V,|U|>1

⌈
|E(U)|
|U|−1

⌉
be the (edge) arboricity of G (see [1]). We use

a(G) as a measure of local density in the graph and observe that a(G) is small
iff G is “nowhere dense.” The number of nodes is always denoted by n.

At each point of time all nodes are either in state 0 or in state 1. In round t
let Vt(1) ⊆ V denote the set of nodes in state 1; Vt(0) = V \Vt(1) is the cor-
responding complementing set. We synonymously use the term coloring and
say that a node v is c-colored if v ∈ Vt(c), c ∈ {0, 1}. In this case we denote
deg+

t (v) = |E({v}, Vt(1 − c))| and deg−t (v) = deg(v) − deg+
t (v). We define two

notions of satisfaction mentioned before.

Definition 1. A node v is max-satisfied at time t if deg+
t (v) ≥ deg−t (v). A node

v is min-satisfied at time t if deg+
t (v) ≤ deg−t (v).

Self-stabilizing Cuts in Synchronous Networks 237

Fixing one notion of satisfaction, let V sat
t denote the set of all nodes that are

satisfied at time t and V unsat
t := V \ V sat

t denote the set of unsatisfied nodes.
Given 0 < p < 1, the self-stabilizing cut algorithm is formally defined as follows.

Self-stabilizing cut algorithm

1: In round t execute the following rule simultaneously for all nodes v:
2: if v ∈ V unsat

t then
3: invert state of v for round t + 1 with probability p.

A cut where all nodes are satisfied is called stable. The stabilization time is
defined as the first round with a stable cut. We are interested in the expected
stabilization time, where the initial cut may be chosen uniformly at random or by
an adversary. In the latter case, we speak of the worst-case expected stabilization
time.

Observe that for bipartite graphs one can easily switch between the two models
of satisfaction. Given a bipartition V = U ∪W of the graph G = (V, E), flipping
(inverting) all nodes in U turns every cut edge into a non-cut edge and vice versa.
Thereby, the meaning of deg+

t (v) and deg−t (v) is exchanged and a node becomes
min-satisfied iff it has been max-satisfied before. In particular, a stable cut for
one model becomes a stable cut for the other model after this transformation.

More precise, let the function h on the state space {0, 1}n be such a transfor-
mation, then the following holds. Consider the algorithm applied to both models.
If the max-satisfaction model starts in state x0 and the min-satisfaction model
starts in state y0 = h(x0), then at any point of time t for any state xt the prob-
ability that the max-satisfaction model is in state xt equals the probability that
the min-satisfaction model is in state yt = h(xt). This symmetrical behavior
implies that the random stabilization times for the two models have the same
probability distribution. It therefore suffices to focus on one model when dealing
with bipartite graphs.

In the max-satisfaction model, shortly max-model, a stable configuration rep-
resents a maximal cut, i. e., a cut that cannot be enlarged by changing a single
node. This is because a local improvement implies an unsatisfied node. The same
holds for the min-model and minimal cuts. In a non-distributed setting one may
easily obtain maximal and minimal cuts by local search, simply changing a single
unsatisfied node in each round. The number of cut edges is then strictly increas-
ing over time, implying that at most |E| iterations are needed in order to find
a maximal or minimal cut. The self-stabilizing cut algorithm can simulate an
iteration of local search if exactly one specific unsatisfied node is flipped, which
happens with probability p · (1−p)|V

unsat
t |−1 > 0. Hence, there is a positive prob-

ability that the algorithm simulates a whole run of local search ending with a
stable cut.

Proposition 1. In both the max-model and the min-model, the self-stabilizing
cut algorithm stabilizes in finite time with probability 1.

238 T. Sauerwald and D. Sudholt

In the following, we will present more precise results, i. e., we prove bounds be-
tween logarithmic, polynomial, and exponential orders for different graph classes.
As we are especially interested in the impact of the parameter p, we state our
results w. r. t. n and p.

3 A General Upper Bound

In this section we derive general upper bounds for both the max-model and
the min-model. Thereby, we exploit that under certain conditions there is a
probabilistic tendency to increase the cut size in the max-model and to decrease
the cut size in the min-model, respectively.

Theorem 1. On any graph G = (V, E), if p ≤ 1/(4a(G)), the expected stabi-
lization time for both the max-model and the min-model is bounded from above
by 2|E|/p.

Proof. It suffices to consider the max-model as the arguments for the min-
model are symmetric. Let Pt = (Vt(0), Vt(1)) and let f(Pt) be the number of
cut edges in Pt. Consider one round of the algorithm and let V flip

t be the set of
nodes changing sides (flipping) in round t. If v is the only node to be flipped in
round t, this operation increases the cut size by deg−t (v) − deg+

t (v) ≥ 1. If V flip
t

is an independent set, the total increase of the cut size is
∑

v∈V flip
t

(deg−t (v) −
deg+

t (v)) ≥ |V flip
t |. However, if two changing nodes share an edge, this edge is

counted wrongly for both nodes. This implies

f(Pt+1) − f(Pt) ≥
∑

v∈V flip
t

(deg−t (v) − deg+
t (v)) − 2|E(V flip

t)|

≥ |V flip
t | − 2|E(V flip

t)|.

The expected gain in cut size is at least

E (f(Pt+1) − f(Pt)) ≥ p|V unsat
t | − 2p2|E(V unsat

t)|.

Observe |E(V unsat
t)| ≤ a(G)·(|V unsat

t |−1) < a(G)· |V unsat
t | by definition of a(G).

Along with the assumption p ≤ 1/(4a(G)), we arrive at

E (f(Pt+1) − f(Pt)) ≥ p|V unsat
t | − 2p2 · a(G) · |V unsat

t | ≥ p/2 · |V unsat
t |.

As long as the current cut is not stable, |V unsat
t | ≥ 1, hence the expected increase

in cut size is at least p/2.
We now use drift analysis arguments from He and Yao [10, Lemma 1]. Consider

a Markov chain with states X0, X1, . . . for domain R+
0 . Let α, δ > 0 and assume

we are interested in the first time until the Markov chain first reaches a value
at least α. If δ is a lower bound for the expected increase in one step, i. e.,
E (Xt+1 − Xt | Xt) ≥ δ for Xt < α, the expected first hitting time for a value at
least α is at most α/δ. Symmetrically, if E (Xt − Xt+1 | Xt) ≥ δ for Xt > 0, the
expected time to reach value 0 starting with α is at most α/δ.

Self-stabilizing Cuts in Synchronous Networks 239

We apply these statements to the random cut size and finish our considera-
tions prematurely if a maximal cut is reached. Hence, the expected time until a
cut of size |E| is reached or a maximal cut is found beforehand is bounded by
|E|/(p/2) = 2|E|/p. �

Section 5 contains examples where this bound is asymptotically tight. Note that
the simple strategy of choosing p = 1/(2n) is oblivious of the graph at hand and,
nevertheless, yields a polynomial bound of 4|E|n rounds. This also proves that
the expected stabilization time can be polynomial for any graph if the parameter
p is chosen appropriately.

From Theorem 1 one can easily derive a handy upper bound for all planar
graphs. The arboricity of a planar graph is known to be at most 3. A proof
follows by contradiction. If there is a set U ⊆ V with |U | > 1 such that a(G) ≥
|E(U)|
|U|−1 > 3, this implies |E(U)| > 3|U | − 3. However, this contradicts the fact
that the number of edges in a planar graph with k nodes is at most 3k − 6 (see,
e. g., [3]). Therefore a(G) ≤ 3 holds if G is planar.

Corollary 1. On any planar graph G = (V, E), if p ≤ 1/12, the expected stabi-
lization time for the max-model and the min-model is bounded by 2|E|/p ≤ 6n/p.

4 Dense Graphs

The upper bounds from the previous section grow with 1/p, suggesting to always
choose p large. In this section, however, we prove for the max-model that in dense
graphs large values for p may result in exponentially large stabilization times.
The complete graph Kn is the simplest dense graph. For even n, a cut is maximal
(and maximum in this case) if |Vt(0)| = n/2. However, if p is chosen too large, it
may happen that too many nodes change sides simultaneously and a majority of
0-nodes is turned into a similarly large majority of 1-nodes, and so forth. This
may result in a non-stable equilibrium that is hard to overcome. The following
result shows that for large p the max-model needs exponential time to stabilize.
Due to space limitations, proofs for the following theorems are placed in an
extended version of this work [16].

Theorem 2. Consider the complete graph Kn, n even, with n−1/3 ≤ p ≤ 1/2
and an arbitrary, non-stable initialization. Then the stabilization time of the
max-model is at least 1

2 exp(np3

192) with probability 1 − o(1).

On the other hand, the effect of too many flipping nodes decreases with de-
creasing p. The following result shows that if p = O((log n)/n) (and, of course,
p ≥ n−O(1)) the expected stabilization time is polynomial.

Theorem 3. Consider the complete graph Kn, n even, with an arbitrary initial-
ization. Then the expected stabilization time of the max-model is bounded above
by 1/p · (1 − p)−n/2.

240 T. Sauerwald and D. Sudholt

Negative results for an unlucky initialization can also be shown for random
graphs of a probability space G(n, p′) defined as follows. The random graph
consists of n nodes and between any pair of nodes, an edge occurs independently
with probability p′. The case p′ = 1/2 is especially interesting as G ∈ G(n, 1/2)
is a uniform sample among all graphs with n nodes.

Theorem 4. Consider a graph G in G(n, 1/2), n even, and assume that initially
20
32n ≤ |V0(0)| ≤ 23

32n. Then the stabilization time of the max-model with p = 1
2 is

exp(Ω(n)) with probability 1 − exp(−Ω(n)) (w. r. t. the randomized construction
of G and the randomized self-stabilizing cut algorithm).

5 Ring Graphs, Torus Graphs, and Hypercubes

We now consider commonly used network topologies like ring graphs (and other
graphs with maximum degree 2), torus graphs, and hypercubes.

5.1 Ring Graphs

Consider a graph G = (V, E) with maximum degree 2. Theorem 1 yields an
upper bound O(n/p) if p ≤ 1/8. We improve upon this result exploiting that on
these topologies satisfied nodes cannot become unsatisfied again.

Definition 2. A set of nodes S ⊆ V is called stable w. r. t. the current cut
Pt if all nodes in S are satisfied and will remain so in all future rounds with
probability 1. A node v is called stable if it is contained in a stable set; otherwise,
v is called unstable.

Isolated nodes are trivially stable, hence we assume that G does not contain
isolated nodes. Then in the max-model (min-model) a node v is satisfied iff it
has at least one neighbor w on the other side of the cut (on the same side of
the cut). This condition also implies that w is satisfied. Even stronger, v and w
will remain satisfied forever since the edge {v, w} will never be touched again.
Therefore, on graphs with maximum degree 2 all satisfied nodes are stable.

Theorem 5. The expected stabilization time for the max-model and the min-
model on a graph G = (V, E) with Δ(G) ≤ 2 is O((log n)/(p(1 − p))).

Proof. Consider a node v that is unsatisfied in round t and the random de-
cision whether to flip v or not. At least one decision makes v satisfied in
round t + 1. The “right” random decision for v is made with probability at least
q := min{p, 1 − p}. In expectation q|V unsat

t | nodes become satisfied (and there-
fore stable), hence E

(
|V unsat

t+1 | | |V unsat
t |

)
≤ (1 − q) · |V unsat

t | for any V unsat
t ⊆ V .

Using the law E
(
|V unsat

t+1 |
)

= E
(
E

(
|V unsat

t+1 |
)

| |V unsat
t |

)
and a trivial induction

yields E (|V unsat
t |) ≤ (1 − q)t · |V unsat

0 | ≤ (1 − q)t · n.
Choosing T :=

⌈
log(1−q)

1
2n

⌉
yields E (|V unsat

T |) ≤ 1/2. By Markov’s inequal-

ity Pr (|V unsat
T | ≥ 1) ≤ 1/2. Hence after T rounds all nodes are satisfied with

Self-stabilizing Cuts in Synchronous Networks 241

probability at least 1/2, regardless of the initial cut. If this is not the case, we
consider another period of T rounds and repeat the argumentation. The ex-
pected number of periods is at most 2, hence the expected stabilization time is
bounded by

2T ≤ 2
(

log(1−q)
1
2n

)
+ 2 =

2 ln(2n)

ln
(

1
1−q

) + 2 ≤ 2 ln(2n)
q

+ 2 = O

(
log n

q

)

where the second inequality follows from 1/(1 − x) ≥ ex for x < 1. The theorem
follows since q = Θ(p(1 − p)). �

5.2 Torus Graphs

We denote by Gr×s = (V, E) for r, s ≥ 4 both even a two-dimensional torus
graph, defined by

V = {(x, y) | 0 ≤ x ≤ r − 1, 0 ≤ y ≤ s − 1} and
E = {(x1, y1), (x2, y2) | (x2 = x1 ∧ y2 = (y1 + 1) mod s) ∨

(x2 = (x1 + 1) mod r ∧ y2 = y1)}.

Gr×s thus consists of r rows and s columns (see Figure 1). Note that due to the
assumptions on r and s all torus graphs are bipartite and regular as all nodes
have degree 4. Recall that the max-model can be transferred into an equivalent
min-model by inverting states of all nodes in one set of the bipartition. The
visualization is easier for the min-model where large monochromatic areas in
the torus are “good.” Hence we will argue with the min-model in the following;
however, all results also hold for the max-model.

In the min-model we can derive an intuitive characterization of stable nodes,
referring to states synonymously as colors. A sufficient condition for a c-colored
node v to be stable is that v belongs to a cycle of c-colored nodes. Moreover, v
is stable if it belongs to a path connecting two such cycles. The following lemma
shows that these two conditions are also necessary for stability.

Lemma 1. Consider the min-model for Gr×s. A c-colored node v, c ∈ {0, 1},
is stable iff v belongs to a cycle of c-colored nodes or v is on a path of c-colored
nodes connecting two such cycles.

Proof. Consider the subgraph Gc = (Vc, Ec) induced by all c-colored nodes.
On a cycle C ⊆ Vc all u ∈ C are satisfied, hence they will remain so forever.
Consider a path P ⊆ Vc connecting two cycles C1, C2 ⊆ Vc. As all nodes in
C1 ∪ C2 remain satisfied, all u ∈ P remain satisfied as well.

On the other hand, if v is neither on a cycle nor on a path connecting two
cycles, then v cannot be stable. Assume that v is satisfied since otherwise the
claim is trivial. Let S be the union of all cycles in Vc, then v ∈ Vc \ S. Let T be
the connected component of Vc \S that contains v. As T does not contain cycles,
T is a tree. Consider v as the root of T , then v has at least two subtrees in T

242 T. Sauerwald and D. Sudholt

Fig. 1. Torus graphs G8×8 (left) and G4×16 (right). The coloring shows worst-case ini-
tial cuts in the min-model, where only the end nodes of the black paths are unsatisfied.
All white nodes are stable by Lemma 1.

since v is satisfied. As v does not lie on a path connecting two cycles, at most
one of v’s subtrees is connected to S. In a subtree not connected to S every leaf
is unsatisfied. If the next subsequent rounds only flip leaves of T , all subtrees
of v (except one, if v is connected to S) are gradually eliminated, leaving v
unsatisfied. We conclude that v cannot be stable. �

We first consider the worst-case expected stabilization time. It is easy to see that
we can color the nodes in Gr×s such that all 1-nodes form a path of length Ω(n)
where every 1-node is adjacent to at most two other 1-nodes and all 0-nodes
are stable. Figure 1 gives two examples. In such a cut only the two ends of the
path are unsatisfied. As long as the path has length at least 2, this property is
preserved since flipping an end node renders its neighbor on the path unsatisfied.
The algorithm is thus forced to flip the nodes on this path one after another,
starting from both ends simultaneously. It is then easy to prove the following
lower bound.

Theorem 6. The worst-case expected stabilization time for both the max-model
and the min-model on Gr×s is Ω(n/p).

An upper bound can be shown using that unsatisfied nodes have a good chance
to become part of a cycle of equally colored nodes.

Lemma 2. Consider the torus graph Gr×s. If the current cut contains an un-
satisfied node v, the probability that v becomes stable within the next two rounds
is at least p2(1 − p)5.

Proof. W. l. o. g. v is 1-colored and we consider the min-model. We name nodes
around v according to their direction from v and identify nodes with their cor-
responding colors. First consider the case deg+(v) = 0, implying vN = vE =
vS = vW = 0. If any node from {vNW , vNE , vSE , vSW } is 0-colored, say vNW ,
flipping v and not flipping vN , vW , and vNW creates a cycle. As vNW is sat-
isfied, the probability for such an event is at least p(1 − p)2. Now, assume
vNW = vNE = vSE = vSW = 1. Then flipping vN and vE creates a cycle of
1-nodes. The probability for this to happen is at least p2.

Self-stabilizing Cuts in Synchronous Networks 243

Let deg+(v) = 1 and w. l. o. g. assume that vN is 1-colored. If vSW or vSE is
0-colored, a 0-cycle is created with probability at least p(1 − p)2. Hence, assume
vSW = vSE = 1. If vNW or vNE is 1-colored, say vNW , then vW is unsatisfied
and flipping it and not flipping vNW creates a 1-cycle, with probability p(1− p).
The only remaining case is vNW = vNE = 0. If the next round flips v and doesn’t
flip vW , vNW , vE , and vNE , then vN becomes unsatisfied in the following round.
Flipping vN and not flipping vNW creates a cycle. The probability for these two
rounds to be successful is at least p2(1 − p)5. �

The expected time to decrease the number of unstable nodes is bounded above
by 1/(p2(1 − p)5) = O(1/p2) if, say, p ≤ 1/2, hence the following theorem is
immediate.

Theorem 7. The worst-case expected stabilization time for both the max-model
and the min-model on Gr×s is O(n/p2) if p ≤ 1/2.

We believe that with random initialization the expected stabilization time is
much smaller. It is very unlikely that random initialization creates long paths of
unstable 1-nodes. However, such paths of length Θ(log n) are still quite likely.
Using the same arguments leading to Theorem 6, a lower bound of Ω((log n)/p)
can be shown. An upper bound is more difficult. We present a bound that is
of order O((log n)/p2) if the number of rows (or, symmetrically, the number of
columns) is constant (and p ≤ 1/2).

Theorem 8. After random initialization, the expected stabilization time for both
the max-model and the min-model on Gr×s is O((log n) · 2r/p2) if p ≤ 1/2.

Proof. Let Li := {(x, i) | 0 ≤ x ≤ r − 1}, 1 ≤ i ≤ s, be the nodes in the i-th
column in the graph and note |Li| = r. The probability that all nodes in Li are
initialized zero (or initialized one) is exactly 2−r+1. In this case, Li is a stable
set. The probability that there is no stable set among the consecutive columns
Li, Li+1, . . . , Li+γ−1, where γ = 2 · 2r−1 · ln n for a fixed i is

(
1 − 2−r+1)γ

=
(
1 − 2−r+1)2·2r−1·lnn ≤ n−2.

Dividing the torus into blocks containing γ consecutive columns each, the prob-
ability that each block contains at least one stable column is at least 1 − n−1.
Assume that every block contains a stable column and denote by S the set of
stable nodes after initialization. Then G\S consists of connected components,
each of which consists of at most 2rγ nodes. Consider one component C. If two
subsequent rounds turn an unsatisfied node in C into a stable node, we speak
of a success. Unless C is stable, there is at least one unsatisfied node in C and
by Lemma 2 the success probability in two rounds is at least q := p2(1 − p)5.
We now argue that with high probability C becomes stable within 2T rounds,
T := 4rγ/q. Imagine a sequence of coin flips where each coin shows heads with
probability q. By the Chernoff bound the probability that less than 2rγ out of
T coins show heads is at most

exp(−qT/8) = exp(−rγ/2) ≤ n−2

244 T. Sauerwald and D. Sudholt

as r ≥ 2. As |C| ≤ 2rγ, the probability that C does not become stable within
2T rounds is at most n−2. Taking the union bound over at most n components,
the whole graph is stable after 2T rounds with probability at least 1 − n−1.

The unconditional probability that the bound 2T holds is at least 1 − 2n−1.
In case there is a block without stable column or in case the system has not
stabilized after 2T rounds, we use the upper bound O(n/p2) by Theorem 7 to
estimate the remaining stabilization time. As this is only necessary with prob-
ability at most 2n−1, the unconditional expected stabilization time is bounded
by 2T + O(1/p2) = O((log n) · 2r/p2). �

The bound from Theorem 8 depends crucially on r. However, we do not believe
that the stabilization time is significantly affected by the aspect ratio of the torus.
Instead, we conjecture that an upper bound O((log n)k/pk) for some k = O(1)
holds for all torus graphs.

5.3 Hypercubes

Recall that the node set of a d-dimensional hypercube is given by {0, 1}d and
edges are between nodes which differ in exactly one coordinate. We are interested
in the worst-case expected stabilization time on hypercubes. For torus graphs
we identified paths of unstable 1-nodes that delay the stabilization process. As
nodes in the d-dimensional hypercube have larger degree if d > 4, we identify
larger structures of unstable nodes.

Theorem 9. The worst-case expected stabilization time for both the max-model
and the min-model on a d-dimensional hypercube with n = 2d nodes, d ≥ 4 even,
is Ω(n1/2 + 1/p).

Proof. As the hypercube is bipartite, it suffices to argue for the min-model.
Given a graph G′ = (V ′, E′), a snake-in-box in G′ is a sequence of connected
nodes s′1, . . . , s

′
� such that {s′i, s

′
j} ∈ E′ implies j = i ± 1 (identifying s′�+1 with

s′1 and s′0 with s′�). It is known how to construct a snake-in-box with length
5/24 · 2d − 44 in the d-dimensional hypercube [17]. Let s1, . . . , s� be a snake-
in-box in the (d/2)-dimensional hypercube with � ≥ 5/24 · 2d/2 − 44 and let
S = {s1, . . . , s�−1}. Let v[i] ∈ {0, 1} denote the value of the i-th coordinate of v
and define an initial cut as follows:

v ∈ V0(1) ⇔ (v[1]v[2] . . . v[d/2] ∈ S) ∧ (v[d − 1]v[d] = 00).

Each 0-node with v[d − 1]v[d] = 00 is satisfied since flipping one of the last d/2
bits results in a 0-neighbor. All other 0-nodes are satisfied since flipping one of
the first d−2 ≥ d/2 bits leads to a 0-neighbor. We conclude that all 0-nodes are
satisfied and, therefore, stable. Dividing all 1-nodes into layers, layer i contains
all 1-nodes v with v[1] . . . v[d/2] = si. For a 1-node v flipping a bit at position
i ∈ {d/2+1, . . . , d−2} results in a 1-neighbor. Due to the snake-in-box property
of S, v has at most two additional 1-neighbors obtained by flipping single bits
among the first d/2 positions. More precise, after initialization all 1-nodes in

Self-stabilizing Cuts in Synchronous Networks 245

layers 1 and �− 1 are unsatisfied with a 1-degree (i. e. number of 1-neighbors) of
d/2−1 while every other 1-node has 1-degree d/2 and thus is satisfied. If such an
unsatisfied node flips, all its 1-neighbors with 1-degree d/2 become unsatisfied.

A layer is called satisfied w. r. t. the current cut if it only contains satisfied
1-nodes. Observe that in every round all satisfied layers are connected in the
subgraph of all 1-nodes. We focus on the outermost satisfied layers and define as
potential the minimum difference α − β for α ≤ β such that for every satisfied
layer i we have α < i < β. Layers α and β therefore “surround” all satisfied
layers. The initial potential equals � − 2 and a potential of 0 is necessary for a
stable cut. Layers α and β both contain unsatisfied 1-nodes and a round flipping
one of these nodes decreases β or −α by 1, respectively. The probability of
decreasing the potential by 1 or 2 in one round is at most δ := min{1, 2d/2−1 · p},
taking the union bound over at most 2d/2−1 unsatisfied 1-nodes in layers α and β.
The expected waiting time for such an event is bounded below by 1/δ, hence
the expected time until the potential has decreased to 0 is bounded below by
1/δ · (� − 2)/2 = Ω(n1/2 + 1/p). �

6 Conclusions and Future Work

We investigated a self-stabilizing algorithm for maximal and minimal cuts in a
restricted distributed environment. The time until the system stabilizes depends
on the model of satisfaction, the underlying network, the parameter p, and the
initial cut. Surprisingly, the expected stabilization time can range from loga-
rithmic to exponential values. While sparse graphs such as planar graphs, rings,
and torus graphs stabilize in expected time O(n/pO(1)) (or even in logarithmic
time) for max- and min-models, on many dense graphs the stabilization time for
the max-model is exponential with high probability if p is constant. Moreover,
we have seen for certain torus graphs that there is an exponential gap between
random and worst-case initialization.

Several open questions remain, for example a tight bound on the expected
stabilization time for all torus graphs and hypercubes with random initialization.
Our models use a fixed probability p for flipping unsatisfied nodes. One may
also think of other, local strategies, for example flipping an unsatisfied node v
with probability proportional to 1/ deg(v) or depending on the degrees of v’s
neighbors.

Acknowledgment. We would like to thank Martin Gairing for helpful com-
ments on an earlier version of this paper.

References

1. Chen, B., Matsumoto, M., Wang, J., Zhang, Z., Zhang, J.: A short proof of Nash-
Williams’ theorem for the arboricity of a graph. Graphs and Combinatorics 10(1),
27–28 (1994)

2. Dasgupta, A., Ghosh, S., Tixeuil, S.: Selfish stabilization. In: Stabilization, Safety,
and Security of Distributed Systems (2006)

246 T. Sauerwald and D. Sudholt

3. Diestel, R.: Graph Theory. Springer, Heidelberg (2005)
4. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-

cations of the ACM 17(11), 643–644 (1974)
5. Elkin, M.: Distributed approximation: a survey. SIGACT News 35(4), 40–57 (2004)
6. Gairing, M., Goddard, W., Hedetniemi, S.T., Kristiansen, P., McRae, A.A.:

Distance-two information in self-stabilizing algorithms. Parallel Processing Let-
ters 14(3-4), 387–398 (2004)

7. Ghosh, S., Karaata, M.H.: A self-stabilizing algorithm for coloring planar graphs.
Distributed Computing 7(1), 55–59 (1993)

8. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing proto-
cols for maximal matching and maximal independent sets for ad hoc networks. In:
17th International Parallel and Distributed Processing Symposium (IPDPS 2003),
p. 162. IEEE Computer Society, Los Alamitos (2003)

9. Gradinariu, M., Tixeuil, S.: Self-stabilizing vertex coloration and arbitrary graphs.
In: Procedings of the 4th International Conference on Principles of Distributed
Systems, OPODIS 2000, pp. 55–70 (2000)

10. He, J., Yao, X.: A study of drift analysis for estimating computation time of evo-
lutionary algorithms. Natural Computing 3(1), 21–35 (2004)

11. Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Maximal matching stabilizes in time
O(m). Information Processing Letters 80(5), 221–223 (2001)

12. Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Linear time self-stabilizing colorings.
Information Processing Letters 87(5), 251–255 (2003)

13. Huang, S.-T., Hung, S.-S., Tzeng, C.-H.: Self-stabilizing coloration in anonymous
planar networks. Information Processing Letters 95(1), 307–312 (2005)

14. Kosowski, A., Kuszner, �L.: Self-stabilizing algorithms for graph coloring with
improved performance guarantees. In: Rutkowski, L., Tadeusiewicz, R., Zadeh,
L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1150–1159.
Springer, Heidelberg (2006)

15. Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A new self-stabilizing maximal
matching algorithm. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS,
vol. 4474, pp. 96–108. Springer, Heidelberg (2007)

16. Sauerwald, T., Sudholt, D.: Self-stabilizing cuts in synchronous networks. Techni-
cal Report CI-244/08, Collaborative Research Center 531, Technische Universität
Dortmund (2008)

17. Tovey, C.A.: Local improvement on discrete structures. In: Local search in combi-
natorial optimization, pp. 57–89. Princeton University Press, Princeton (1997)

Quiescence of Self-stabilizing Gossiping

among Mobile Agents in Graphs

Toshimitsu Masuzawa1,� and Sébastien Tixeuil2,��

1 Osaka University, Japan
2 Université Pierre-et-Marie-Curie - Paris 6, France

Abstract. This paper considers gossiping among mobile agents in
graphs: agents move on the graph and have to disseminate their initial
information to every other agent. We focus on self-stabilizing solutions
for the gossip problem, where agents may start from arbitrary locations
in arbitrary states. Self-stabilization requires (some of the) participat-
ing agents to keep moving forever, hinting at maximizing the number of
agents that could be allowed to stop moving eventually.

This paper formalizes the self-stabilizing agent gossip problem, intro-
duces the quiescence number (i.e., the maximum number of eventually
stopping agents) of self-stabilizing solutions and investigates the qui-
escence number with respect to several assumptions related to agent
anonymity, synchrony, link duplex capacity, and whiteboard capacity.

1 Introduction

Distributed systems involving mobile entities called agents or robots recently
attracted a widespread attention as they enable adaptive and flexible solutions to
several problems. Intuitively, agents1 are mobile entities operating in a network
that is modeled by a graph; agents have limited computing capabilities and are
able to move from a node to one of its neighbors. The gossip problem among
mobile agents was introduced by Suzuki et al. [9] as one of the most fundamental
schemes supporting cooperation among mobile agents. The problem requires
each agent to disseminate the initially given information to all other agents.
Suzuki et al. [9] investigated the problem of minimizing the number of agent
moves for the gossip problem in fault-free networks, and presented asymptotically
optimal distributed solutions on several network topologies.

With the advent of large-scale networks that involve a total number of com-
ponents in the order of the million, the fault (and attack) tolerance capabilities
become at least as important as resource minimization. In this paper, we con-
sider the gossip problem in networks where both agents and nodes can be hit by
� This work is supported in part by MEXT: Global COE (Center of Excellence) Pro-

gram and JSPS: Grant-in-Aid for Scientific Research ((B)19300017).
�� This author is supported in part by the FRACAS ARC project from INRIA and by

the SOGEA projects of the ACI “Sécurité et Informatique” of the French Ministry
of Research. Additional support from the INRIA research-team Grand Large.

1 Agents and robots can be used interchangeably in this paper.

A. Shvartsman and P. Felber (Eds.): SIROCCO 2008, LNCS 5058, pp. 247–261, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

248 T. Masuzawa and S. Tixeuil

unpredictable faults or attacks. More precisely, we consider that transient faults
arbitrarily corrupt the agent states and the node states (or the whiteboard con-
tents), and devise algorithmic solutions to recover from this catastrophic situa-
tion. The faults and attacks are transient in the sense that there exists a point
from which they don’t appear any more and agents can work correctly accord-
ing to their programs. In practice, it is sufficient that the faults and attacks are
sporadic enough for the network to provide useful services most of the time. Our
solutions are based on the paradigm of self-stabilization [4], an elegant approach
to forward recovery from transient faults and attacks as well as initializing large-
scale systems. Informally, a self-stabilizing system is able to recover from any
transient fault in finite time, without restricting the nature or the span of those
faults.

Related works. Mobile (software) agents on graphs were studied in the context of
self-stabilization, e.g., in [2,6,7,8], but the implicit model is completely different
from ours. In the aforementioned works, agents are software entities that are
exchanged through messages between processes (that are located in the nodes
of the network), and thus can be destroyed, duplicated, and created at will.
The studied problems include stabilizing a network by means of a single non-
stabilizing agent in [2,7], regulating the number of superfluous agents in [6], and
ensuring regular traversals of k agents in [8].

The agent rendez-vous problem is closely related to the agent gossip problem
and has been thoroughly investigated in previous works (e.g., [1]). The agent
rendez-vous problem requires that all agents initially scattered in a network
should meet at a single node not determined in advance. Thus, any solution for
the rendez-vous problem is also a solution for the agent gossip problem: agents
can exchange their initial information at the meeting point. However, the gossip
among agents can be achieved without rendez-vous of all the agents. Suzuki et
al. [9] shows that the gossip problem requires less (with respect to the number
of agent moves) than the rendez-vous problem in some fault-free cases.

In this paper, we follow the model previously used in [3], that studies neces-
sary and sufficient condition for the problems of naming and electing agents in a
network that is subject to transient faults. The model assumes that the number
of agents is fixed during any execution of the algorithm, but the agents can start
from any arbitrary location in the network and in any arbitrary initial state.
Agents can communicate with other agents only if they are currently located
on the same node, or make use of so-called whiteboards - public memory vari-
ables located at each node. Of course, whiteboards may initially hold arbitrary
contents due to a transient fault or attack.

Our contribution. The contribution of this paper is twofold:

1. We introduce the quiescence number of self-stabilizing agent-based solu-
tions to quantify communication efficiency after convergence. Self-stabilizing
agent-based solutions inherently require (some of the) participating agents
to keep moving forever. This hints at maximizing the number of agents that

Quiescence of Self-stabilizing Gossiping among Mobile Agents in Graphs 249

Table 1. Quiescence numbers of the k-gossip problem

Distinct agents

synchronous model asynchronous model
whiteboards half-duplex full-duplex half-duplex full-duplex

FW k − 1 (Th. 1 & 3) 0 (Th. 6)

CW k − 1 (Th. 1 & 3) 0 (Th. 7) −1 (Th. 5)

NW −1 (Th. 4) −1 (Th. 4) −1 (Th. 5)

Anonymous agents

synchronous model asynchronous model
whiteboards half-duplex full-duplex half-duplex full-duplex

FW ≥ 0 (Th. 10) 0 (Th. 9)

CW −1 (Th. 8) −1 (Th. 8)

NW −1 (Th. 4) −1 (Th. 4) −1 (Th. 5)

could be allowed to stop moving after some point in every execution. The qui-
escence number denotes the maximum possible number of stopping agents2

2. We study the quiescence number of self-stabilizing k-gossiping (that denotes
the gossiping among k agents). The quiescence numbers we obtain are sum-
marized in Table 1, where ”−1” represents impossibility of 0-quiescence (that
is, the problem is impossible to solve in a self-stabilizing way, even if agents
are all allowed to move forever). We consider the quiescence number un-
der various assumptions about synchrony (synchronous/asynchronous), node
whiteboards (FW/CW/NW), edge capacity (half-duplex/full-duplex) and
anonymity of the agents. The details of the assumptions are presented in the
next section.

Outline. In Section 2, we present the computing model with various assump-
tions we consider in this paper. We also introduce the gossip problem and define
the quiescence number of the gossip problem. Section 3 provides impossibil-
ity/possibility results in the model where each agent has a unique id. Section 4
briefly considers the quiescence numbers in the model of anonymous agents.
Concluding remarks are presented in Section 5.

2 Preliminaries

Model. The network is modeled as a connected graph G = (V, E), where V is a
set of nodes, and E is a set of edges. We assume that nodes are anonymous, that
is, no node has a unique id and all the nodes with the same degree are identical.
We also assume that nodes have local distinct labels for incident links, however
no assumption is made about the labels. Each node also maintains a so-called
whiteboard which agents can read from and write to. Those whiteboards may
store a finite yet unbounded amount of information.
2 Minimizing communication after convergence in conventional self-stabilizing solu-

tions has been largely investigated with silent [5] protocols.

250 T. Masuzawa and S. Tixeuil

Agents (or robots) are entities that move between neighboring nodes in the
network. Each agent is modeled by a deterministic state machine. An agent
staying at a node may change its state, leave some information on the whiteboard
of the node, and move to one of the node’s neighbors based on the following
information: (i) the current state of the agent, (ii) the current states of other
agents located at the same node, (iii) the local link labels of the current node
(and possibly the label of the incoming link used by the agent to reach the node),
and (iv) the contents of the whiteboard at the node. In other words, the only
way for two agents to communicate is by being hosted by the same node or by
using node whiteboards.

In this paper, we consider several variants of the model, which fall into several
categories:

1. Agent anonymity: we consider two variants, distinct agents and anony-
mous agents. Each agent has a unique identifier taken from a arbitrarily
large namespace in the distinct agent model, and all agents are anonymous
and identical in the anonymous agent model.

2. Synchrony: we consider two variants, synchronous model and asynchronous
model. In the synchronous model, all the agents are synchronized by rounds
in the lock-step fashion. Every agent executes its action at every round and
can move to a neighboring node. When two (or more) agents are at the same
node, all the agents execute their actions in one round but in sequence. In the
asynchronous model, there is no bound on the number of moves that an agent
can make between any two moves of another agent. However, we assume that
each agent is eventually allowed to execute its action. When two (or more)
agents are at the same node, they execute their actions sequentially. However,
agents located at different nodes may execute their actions concurrently.

3. Link duplex capacity: we consider two variants, full-duplex links and
half-duplex links. A link is full-duplex if two agents located at neighboring
nodes can exchange their position at the same time, crossing the same link
in opposite directions without meeting each other. A link is half-duplex if
only one direction can be used at a given time3.

4. Whiteboard capacity: we consider three distinct hypothesis for informa-
tion stored in the nodes’ whiteboards. In the NW (No Whiteboard) model,
no information can be stored in the whiteboard. In the CW (Control White-
board) model, only control information can be stored in the whiteboard. In
the FW (Full Whiteboard) model, any information can be stored in the
whiteboard (including gossip information, defined later in this section).

Of course, there is a strict inclusion of the hypotheses, and a solution that
requires only, e.g., the NW or the CW classes will work with the less restricted
classes (CW and FW, and FW, respectively). Conversely if an impossibility
result is shown for less restricted classes, e.g., CW and FW, it remains valid in
the more restricted classes (NW, and NW and CW, respectively).

3 If two agents at the different ends of a half-duplex link try to migrate along the link
simultaneously, only one of them succeeds to migrate.

Quiescence of Self-stabilizing Gossiping among Mobile Agents in Graphs 251

The first set of hypotheses (or the agent anonymity) divides between Sec-
tions 3 and 4. In each section, the remaining hypotheses (synchrony, link du-
plex capacity, and whiteboard capacity) are denoted by a tuple. For example,
“(Synch,FW, half)-model” denotes the synchronous model with FW white-
boards and half-duplex links. The wildcard “∗” in the triplet denotes all possi-
bilities for the category. For example, “(∗,FW, half)-model” denotes both the
(Synch,FW, half)-model and the (Asynch,FW, half)-model.

Gossip problem specification. We consider the gossip problem among agents:
agents are given some initial information (called gossip information), and the
goal of a protocol solving the problem is that each agent disseminates its gossip
information to every other agent in the system. Each agent can transfer the gossip
information to another agent by meeting it at a node or by leaving the gossip
information in the whiteboard of a node. In the latter case, a FW whiteboard
is required. The gossip information can be relayed by other agents, that is, any
agent that has already obtained the gossip information of another agent can
transfer all collected gossip information to other agents and can store it in the
whiteboard of a node.

In this paper, we consider self-stabilizing solutions for the gossip problem. The
solutions guarantee that every agent eventually knows the gossip information of
all the agents in the system even when the system is started from an arbitrary
configuration. So, agents may start from arbitrary locations in arbitrary states,
and the nodes’ whiteboards may initially contain arbitrary information. We as-
sume that k agents are present in the network at any time, yet k is unknown to
the agents. We also assume that the network topology or size are unknown to
the agents. In the sequel, the k-gossip problem denotes the problem of gossiping
among k agents.

Quiescence number. We introduce the quiescence of solutions for the k-gossip
problem to describe the fact that some agents, although executing local code,
stop moving at some point of any execution.

Definition 1. A distributed algorithm for mobile agents is l-quiescent (for some
integer l) if any execution reaches a configuration after which l (or more) agents
remain still forever.

Definition 2. The quiescence number of a problem is the maximum integer l
such that a l-quiescent algorithm exists for the problem. For convenience, the
quiescence number is considered to be −1 if there exists no 0-quiescent algorithm
(i.e., the problem is not solvable).

Suzuki et al. [9] considered the CW and FW whiteboard models, and showed
that the difference does not impact the move complexity of non-stabilizing solu-
tions for the gossip problem. In this paper, we clarify some differences among the
NW, the CW and the FW whiteboard models with respect to the quiescence
number of self-stabilizing solutions for the gossip problem.

252 T. Masuzawa and S. Tixeuil

3 Self-stabilizing k-Gossiping among Distinct Agents

Our first result observes that the self-stabilization property of a k-gossiping
protocol implies that at least one mobile agent must keep moving forever in the
system.

Theorem 1. There exists no k-quiescent self-stabilizing solution to the k-gossip
problem in the (∗, ∗, ∗)-model.

Proof sketch. For contradiction, assume that a k-quiescent self-stabilizing algo-
rithm exists. In any network with any set of k agents, the algorithm eventually
reaches a terminal configuration of agents, i.e., a configuration from which all
the agents never move thereafter.

Consider two n-sized networks N1 and N2 (with n > k) and mutually disjoint
sets of k agents scattered on each of the networks. Each of the networks reaches
a terminal configuration where each agent has collected the gossip information
of all the other agents in the network it resides in. Notice that agents in different
networks have collected the different gossip information. Then we construct a
2n-sized network from the networks as follows: choose a node with no agent on
it from each network (there exists such a node since n > k), and connect the
networks by joining the two nodes. For the 2n-sized network, the initial states
of the nodes and the initial states (including the locations) of 2k agents are bor-
rowed from the terminal configurations. As agents do not have the knowledge
of the actual numbers of agents and nodes in the system nor the network topol-
ogy, none of them is able to distinguish between the two systems, the n-sized
networks and the 2n-sized network. Thus, all the agents never move thereafter.
Since agents may only communicate by meeting other agents at the same node
or by using whiteboards, the k agents from N1 are never able to communicate
with any agent from N2, hence the result.

The above discussion is valid independently of the assumptions concerning
the synchrony, the link duplex capacity, or the whiteboard capacity. ��
Notice that Theorem 1 does not hold if agents know the number k of existing
agents. With the assumption of known k, it could be possible for agents to stop
moving when k agents are located at a same node, i.e., k-quiescence may be
attainable if the rendez-vous of k agents is possible. We now show that in the
asynchronous case, no self-stabilizing algorithm can ensure that at least one
agent does not move forever.

Theorem 2. There exists no l-quiescent self-stabilizing solution, for any l (1 ≤
l ≤ k − 1), to the k-gossip problem in (Asynch, ∗, ∗)-model.

Proof sketch. Assume that for every network, there exists a 1-quiescent self-
stabilizing solution, that is, in any execution on any network with any set of k
agents, there exists an agent that does not move after a certain configuration.
The agent is only aware of the states of agents at the same node and the con-
tents of the whiteboard at the node, and this information is sufficient to make the
agent quiescent. In particular, the solution must work in a network that is regular

Quiescence of Self-stabilizing Gossiping among Mobile Agents in Graphs 253

(i.e., all nodes have the same degree) and non trivial. Consider k mutually dis-
joint sets of k agents and executions of each of the k sets on the regular network.
By collecting the quiescent agents and the nodes they reside in, we can construct
a configuration in which every agent is quiescent. Since we consider asynchronous
systems, a quiescent agent cannot start moving unless another agent reaches the
node. As a result, the agents never meet with each other and the gossiping can-
not be achieved. ��
While Theorem 2 precludes l-quiescence in asynchronous models for any l (1 ≤
l ≤ k − 1), the impossibility result does not hold for synchronous systems.
Actually, in synchronous arbitrary networks, we present in Algorithms 3.1, 3.2,
3.3, and 3.4 a positive result: a (k−1)-quiescent self-stabilizing solution to the k-
gossip problem with CW whiteboards. The algorithm is based on the observation
that gossiping can easily be achieved when a single agent repeatedly traverses
the network: the agent alternates indefinitely a traversal to collect information
and a traversal to distribute information. In our scheme, each agent may move
according to a depth-first-traversal (DFT) in the network, and eventually an
agent with minimal identifier (among all agents) keeps traversing forever, while
other agents eventually stop. Since the network is synchronous, a stopped agent
at node u waits for the traversal of the minimal identifier agent a bounded period
of time, then starts moving if no such agent visits u within the bound.

Each node v has variables InLinkv and OutLinkv in its whiteboard to store
information about the DFT of each agent i. We assume for simplicity that v
locally labels each incident link with an integer a (0 ≤ a ≤ Δv − 1) where Δv is
degree of v, and v[a] denotes the neighbor of v connected by the link labeled a.
Variables InLinkv and OutLinkv have the following properties:

– A tuple (i, a) (0 ≤ a ≤ Δv − 1) in variable InLinkv of node v implies that
agent i visited v first from v[a] (i.e., v[a] is the parent of v in the depth-first-
tree). A tuple (i, ⊥) in InLinkv implies that i did not visit v yet, or that i
completed the DFT part starting from v (and returned to the parent of v
in the depth-first-tree). For the starting node of the DFT, (i, ⊥) is always
stored in InLinkv. We assume that only a single tuple of each agent i can
be stored in InLinkv (this can be enforced having InLinkv implemented
through an associative memory) and we consider that the absence of any
tuple involving i denotes that (i, ⊥) is actually present.

– A tuple (i, a) (0 ≤ a ≤ Δv − 1) in variable OutLinkv of node v implies
that agent i left v for v[a] but did not return from v[a] (i.e., i is in the
DFT starting from v[a]). A tuple (i, ⊥) in OutLinkv implies that i did not
visit v yet, or that i completed the DFT part starting from v (and returned
to the parent of v in the depth-first-tree). We assume the same additional
constraints as for InLinkv.

In a legitimate configuration, tuples related to agent i in InLinkv and
OutLinkv of all nodes induce a path from the starting node to the currently vis-
ited node. However, in an arbitrary initial configuration, InLinkv and OutLinkv

may contain arbitrary tuples for agent i (several incomplete paths, cycles, no

254 T. Masuzawa and S. Tixeuil

starting node, etc.). We circumvent this problem by having each agent execut-
ing DFTs repeatedly. In order to distinguish the current DFT from the previous
one, each agent i maintains a boolean flag t biti that is flipped when a new DFT
is initiated. Each node v also maintains a variable T tablev to store t biti from
the last visit of agent i in the form of a tuple (i, bit). For simplicity, we consider
that (i, true) is in T tablev if no tuple of i is contained in T tablev.

We now describe the mechanism to stop the remaining k − 1 agents. We
assume that each node v maintains variables MinIDv, WaitTv, and Waitingv

in its whiteboard. The minimum id among all agents having visited v is stored
in MinIDv, and the (computed) time required to complete a DFT is stored
in WaitTv. The completion time of a DFT is measured by the count-up timer
T imerv of v as follows. Agent p with the minimum id repeatedly makes DFTs.
When visiting v for the first time at each DFT, p sets the count-up timer of v to
WaitTv and resets the timer. Eventually, p completes each DFT in 2m rounds,
where m is the number of edges in the network, and WaitTv = 2m remains true
thereafter. When visiting v, an agent p′ finds a smaller id in MinIDv and stays
at v until the timer value of v reaches WaitTv. Since p eventually completes each
DFT in 2m rounds, each agent other than p eventually remains at a node v (v’s
timer is reset regularly enough to never expire).

Lemma 1. Starting from any initial configuration, in every execution of Algo-
rithms 3.1, 3.2, 3.3, and 3.4, eventually the agent with the minimum identifier
repeatedly depth-first-traverses the network.

Proof sketch. Let p be the agent with the minimum id (among all the agents
in the system). When p visits node v, if p ≤ MinIDv then MinIDv = p
is executed. Otherwise (i.e., when MinIDv stores an identifier that is not
the id of any existing agent), p suspends its DFT and waits for timeout
at v (p is appended into Waitingv). Since no agent with the fake id ex-
ists in the network, read(T imerv) ≥ WaitTv eventually holds (in function
timeout check and executev). When this is the case, MinIDv = min{j | j ∈
Waitingv}(= p) is executed and p resumes the suspended DFT. Once MinIDv

is changed to p, MinIDv never stores an id smaller than p again.
Now consider a DFT initiated by agent p with t bitp = b (b ∈ {true, false}).

In a legitimate configuration, p initiates a DFT from a node v satisfying (p, ⊥) ∈
InLinkv. However, in the initial configuration, (p, a) ∈ InLinkv may hold for
some a (0 ≤ a ≤ Δv − 1) where v is the node p is initially located at. We
first show that p eventually terminates the DFT starting from such an initial
configuration and initiates a new DFT with t bitp = ¬b. When p with t bitp = b
visits a node u in a forward move, p changes its tuple in T tableu to (p, b) if
(p, b) 	∈ T tableu. Otherwise, p backtracks. Since (p, b) in T tableu never changes
to (p, ¬b) as long as p continues the DFT with t bitp = b, p can make at most
m forward moves in the DFT. On the other hand, agent p backtracks from u
to u[a] only when (p, a) ∈ InLinku holds. When backtracking from u to u[a], p
changes its tuple in InLinku to (p, ⊥). Thus, p can make at most n backtracking
moves in the DFT. Consequently, p eventually terminates the DFT even when
it starts the DFT from a node v with (p, ⊥) 	∈ InLinkv.

Quiescence of Self-stabilizing Gossiping among Mobile Agents in Graphs 255

Algorithm 3.1. Protocol (Part 1: constants, variables and timers)
constants of agent i

i: id of i;
constants of node v

degv: degree of v;
local variables of agent i

t biti: bool;
// an alternating bit to distinguish current and previous traversals

local variables of node v
T tablev : set of tuples (id, t bit);

// (id, t bit) implies the latest visit of agent id was done with t bit
InLinkv : set of tuples (id, port);

// (id, port) implies agent id first came from v[port] in the current traversal
// For each id, only the tuple updated last is stored
// (id, ⊥) is stored if v is the initial node of the traversal
// (id, ⊥) is considered to be stored if no (id, ∗) is present

OutLinkv : set of tuples (id, port);
// (id, port) implies agent id went out from v to v[port] last time it visited v
// For each id, only the tuple updated last is stored

MinIDv : agent id;
// the minimum id of the agents that have visited v

WaitTv : int;
// The amount of time agents with the non-minimum id should wait

Waitingv : set of agents;
// The set of agents waiting for timeout at v

timers of node v
T imerv: count-up timer;

The timer value is automatically increased by one at every round
functions on the local timer of node v

reset(T imerv) : Reset the timer value to 0
read(T imerv) : Return the timer value

Now consider a DFT initiated by agent i with t biti = b at node v with
(i, ⊥) ∈ InLinkv. Let G′ = (V ′, E′) be a connected component containing v of
G¬b = (V ¬b, E¬b) where V ¬b = {u ∈ V | (i, ¬b) ∈ T tableu when i initiates the
DFT } and E¬b = (V ¬b × V ¬b) ∩ E. Since the algorithm can be viewed as a
distributed version of a sequential DFT, it means i makes a DFT in G′ and its
outgoing edges (if they exist). When the DFT completes, the tuple of i stored in
T tableu changes to (i, b) at each u in V ′, while the tuple of i stored in T tablew

remains unchanged at w (∈ V ′) during the DFT. Thus, if G′ is not the whole
network, the connected component G′′ (similarly defined as G′ for the next DFT
with t biti = ¬b) contains at least one more node than G′. Since the network is
finite, eventually i makes DFTs repeatedly over the whole network. ��

Theorem 3. The protocol defined by Algorithms 3.1, 3.2, 3.3, and 3.4 is a (k−
1)-quiescent self-stabilizing solution to the k-gossip problem in arbitrary networks
in the (Synch,CW, ∗)-model.

256 T. Masuzawa and S. Tixeuil

Algorithm 3.2. Protocol (Part 2: Main behavior)
Behavior of node v at each round

for each arriving agent i do
visitv(i);

timeout check and executev;

Proof sketch. Let p be the agent with the minimum id. From Lemma 1, eventually
p makes DFTs repeatedly over the whole network. Once p completes the DFT,
MinIDv never becomes smaller than p at any node v.

Now consider p’s DFT of the whole network that is initiated at a configuration
satisfying MinIDv ≥ p at every node v. Then, p repeatedly performs DFTs
without waiting at any node, and p completes each DFT in 2m rounds. This
implies that timeout never occurs at any node starting from the second DFT.
Any agent q other than p suspends its DFT when visiting any node u. Agent q
can return to its suspended traverse only when timeout occurs at u. However,
since timeout never occurs at u, q never returns to its suspended traverse and
remains at u forever. ��
To complete our results for the synchronous case, let us observe that in the
(Synch,CW, ∗) and (Synch,FW, ∗) models, the quiescence number of the k-
gossip problem among distinct agents is k − 1 (by Theorems 1 and 3). There
remains the case of NW whiteboards, unfortunately the following theorem show
that when the memory of agents is bounded (the bound may depend on the
network size n), the k-gossip problem among distinct agents is not solvable.

Theorem 4. The quiescence number of the (∗,NW, ∗)-model is −1 for the k-
gossip problem among distinct agents, when state space of each agent is bounded
(but may depend on the network size n).

Proof sketch. We prove the impossibility for synchronous ring networks. We
assume for the purpose of contradiction that a 0-quiescent solution exists, and
that each agent has at most s states. Notice that s is not necessarily a constant
and may depend on the network size.

We consider system executions where each agent starts its execution from
a predetermined state. Since no information can be stored in the whiteboards
(model NW), the behavior of an agent depends solely on its own state and id
(the network being regular). When an agent executes an action, it changes its
state then (potentially) moves (clockwise or counterclockwise). Since each agent
has at most s states, it repeats a cyclic execution of at most length s unless the
agent meets another agent. Since only three kinds of moves are possible, there
exists at most 3s+1 moving patterns in the cyclic behavior of length s or less.
Now we consider a sufficiently large domain of agent identifiers (e.g., k × 3s+1).
All possible agents are partitioned into at most 3s+1 groups depending on their
moving patterns, and thus, some group contains k or more agents. Now consider
k agents in the group of size k or more, that are placed regularly in different nodes

Quiescence of Self-stabilizing Gossiping among Mobile Agents in Graphs 257

Algorithm 3.3. Protocol (Part 3: Behavior when agent i reaches v from v[a])
function visitv(i);

// Executed when agent i visits node v from v[a] (a may be initially corrupted)
if ((i, t biti) �∈ T tablev) { // first visit of i at v in the current traversal

add (i, t biti) to T tablev; add (i, a) to InLinkv;
if (i ≤ MinIDv) {

MinIDv = i;
WaitTv = read(T imerv);
reset(T imerv); // Timer is reset to start measuring the traversal time
if (degv ≥ 2) {

add (i, nextv(a)) to OutLinkv; // nextv(a) = (a + 1) mod degv

migrate to v[nextv(a)];
}
else { // degv = 1 then backtrack to v[a]

add (i, ⊥) to InLinkv;
migrate to v[a];

}
}
else // i > MinIDv

add i to Waitingv;
}
else if ((i, a) �∈ OutLinkv)

// i previously visited v in the current traversal, i backtracks to v[a].
migrate to v[a];

// The followings are the cases when i backtracks to v from v[a].
else if ((nextv(a) == 0) and ((i, ⊥) ∈ InLinkv)) {

// v is the initial node of i’s traversal and i completes the current traversal
if (i ≤ MinIDv) {

MinIDv = i; WaitTv = read(T imerv); reset(T imerv);
// Initiate a new traversal
t biti = ¬t biti;
add (i, t biti) to T tablev; add (i, 0) to OutLinkv;
migrate to v[0];

}
else // i > MinIDv

add i to Waitingv;
}
else if ((i, nextv(a)) ∈ InLinkv) {

// v is not the initial node of i’s traversal,
// i completes the current traversal from v
add (i, ⊥) to InLinkv; add (i, ⊥) to OutLinkv;
migrate to v[nextv(a)]; // i backtracks

}
else { // i did not complete the current traversal from v

add (i, nextv(a)) to OutLinkv;
migrate to v[nextv(a)];

}

258 T. Masuzawa and S. Tixeuil

Algorithm 3.4. Protocol (Part 4: Behavior when Timeout occurs)
function timeout check and executev;

if read(T imerv) ≥ WaitTv; { // Timeout occurs
MinIDv = min{j | j ∈ Waitingv};
Let i be such that MinIDv = i;
Waitingv = Waitingv − {i};
reset(T imerv); // Timer is reset to start measuring the traversal time
if ((i, a) ∈ InLinkv for some a (0 ≤ a ≤ degv − 1)) {

// v is not the initial node of i’s traversal
Let a be such that (i, a) ∈ InLinkv ;
if (degv ≥ 2) {

add (i, nextv(a)) to OutLinkv;
i migrates to v[nextv(a)];

}
else { // degv = 1 then backtrack to v[a]

add (i, ⊥) to InLinkv ;
i migrates to v[a];

}
else { // v is the initial node of i’s traversal

// Initiate a new traversal
t biti = ¬t biti;
add (i, t biti) to T tablev;
add (i, 0) to OutLinkv;
migrate to v[0];

}
}

in the initial configuration of the nodes. Since agents in the group makes the same
moving pattern in the cycle, the agents repeat the cyclic action without meeting
each other in the synchronous execution. In the models with the whiteboards
NW, the gossiping cannot be achieved without meetings of agents, which is a
contradiction. ��

Note that the impossibility result holds even though the agents all start from
a well known predefined initial state. Thus, if the initial location of agents is
not controlled, even non-stabilizing solution are impossible to design. For asyn-
chronous models, the remaining question is about the possibility of 0-quiescence.

Theorem 5. The quiescence number of (Asynch,CW, full) and
(Asynch,NW, full) model is −1 for the k-gossip problem among distinct
agents.

Proof sketch. We show that there exists no 0-quiescent self-stabilizing solution
to the k-gossip problem in (Asynch,CW, full)-model. Let us assume for the
purpose of contradiction that there exists a 0-quiescent self-stabilizing solution.
All k agents must keep moving in the 0-quiescent solution since 1-quiescence is
impossible from Theorem 2.

Quiescence of Self-stabilizing Gossiping among Mobile Agents in Graphs 259

Now consider a particular agent p. In the asynchronous system with full-duplex
links, there exists an execution such that p never meets any other agent: before
p reaches a node u, all the agents staying at u leave u. (Such an execution is
possible for every node because the system is asynchronous and all agents must
keep moving at every activation.) Notice that full-duplex links allow the agents
to leave u without meeting p: scheduling allows to have all agents exiting u by
the same link used by p to arrive at u to be moving concurrently with p. It
follows that in the execution, agent p cannot disseminate its own information
(agents have to meet one another in CW model). Hence the result. ��

Theorem 6. The quiescence number of (Asynch,FW, ∗)-model is 0 for the k-
gossip problem among distinct agents.

Proof sketch. Theorems 2 shows that 1-quiescence is impossible. Thus, it is suffi-
cient to present a 0-quiescent self-stabilizing solution in (Asynch,FW, ∗)-model.

Consider the following protocol outline. Every agent repeatedly performs
DFTs of the network. When an agent visits a node, it stores its gossip information
in the whiteboard and collects the gossip information stored in the whiteboard.
After a DFT has been completed by every agent, all whiteboards contain the
gossip information of all the agents, and every agent can obtain all the gossip
information by performing an additional DFT.

The self-stabilizing DFT can be realized in the same way as the protocol pre-
sented in Theorem 3: each agent simply behaves as the agent with the minimum
id of the protocol, yet does not need to wait at any node. ��

Theorem 7. The quiescence number of (Asynch,CW, half)-model is 0 for the
k-gossip problem among distinct agents.

Proof sketch. Theorems 2 shows that 1-quiescence is impossible to attain.
Thus, it is sufficient to present a 0-quiescent self-stabilizing solution in
(Asynch,CW, half)-model.

Consider the following protocol outline. Every agent repeatedly performs
DFTs of the network while recording at every traversed node the last targeted
neighboring node. By the recorded information, other agents can trace a partic-
ular agent. When an agent visits a node and finds a smaller id than its own, it
starts tracing the agent with the smaller id. Eventually all the agent other than
agent p (that has minimal id) continue tracing p, that in turns perform a DFT
forever. Since we assume the half-duplex edges, agents cannot miss one another
on a link, and agents perform the same DFT and the agent with minimal id.
Then a similar argument as in [3] implies that all agents other than p meet p in-
finitely often. Thus, by means of agent p, every agent can disseminate its gossip
information to all other agents.

The self-stabilizing DFT can be realized in the same way as the protocol
presented in Theorem 3. The only difference is in the way to detect the fake ids.
In the protocol of Theorem 3, fake ids are detected by a timeout mechanism.
Here, each agent records at each node the distance from the starting node in the
depth-first-tree. In any trace labeled with a fake id, the tracing agent eventually

260 T. Masuzawa and S. Tixeuil

detects contradiction in the distances and then decides that the traced id is
a fake one. Agent p detecting a fake id erases the false records on the path p
traced. ��

4 Self-stabilizing k-Gossip among Anonymous Agents

Distinct agents being a stronger assumption than anonymous agents, all the
impossibility results for distinct agents also hold for anonymous agents. In this
section, we consider only the model variations that the impossibility results for
distinct agents do not cover. The following impossibility results can be derived
from the impossibility results on the rendezvous among anonymous agents [1].

Theorem 8. The quiescence number of (∗,CW, ∗)-model is −1 for the k-gossip
problem among anonymous agents.

Proof sketch. Consider a synchronous ring network where all the whiteboards of
nodes contain the same initial information. Assume that all the agents are in the
same state in the initial configuration. In the synchronous system, all the agents
move exactly the same and they never meet each other, and thus, the gossiping
cannot be completed. ��

Theorem 9. The quiescence number of (Asynch,FW, ∗)-model is 0 for the k-
gossip problem among anonymous agents.

Proof sketch. From Theorem 2, it is sufficient to present a 0-quiescent self-
stabilizing solution to the gossip problem in (Asynch,FW, ∗)-model.

Since the whiteboards FW is available, the k-gossiping can be completed if
every agent repeatedly traverses the network. However, an anonymous agent
cannot record at a node that it has visited the node since its record cannot be
distinguished from that of others. Thus, anonymous agents cannot execute the
DFT like the ones in Theorem 3. Instead, each agent can traverse all the paths
of a given length, say �, using the link labels (i.e., traverse all the paths in the
lexicographic order of the label sequences). When completing the traverse of
the paths of length �, the agent starts traversing the paths of length � + 1. By
repeating the traverses with incrementing the length, eventually the agent can
traverse the whole network. ��

For the synchronous anonymous agents, Theorem 9 guarantees that the quies-
cence number is at least 0. On the other hand, the impossibility of k-quiescence
for synchronous distinct agents (Theorem 1) leads to the following theorem.

Theorem 10. The quiescence number of (Synch,FW, ∗)-model is not larger
than k − 1 and not smaller than 0 for the k-gossip problem among anonymous
agents. ��

Quiescence of Self-stabilizing Gossiping among Mobile Agents in Graphs 261

5 Conclusion

This paper introduced the notion of quiescence for mobile agent protocols in a
self-stabilizing setting. This notion complements the notion of silence [5] used
in “classical” self-stabilizing protocols. While k-quiescence of k-gossiping among
distinct agents is easily attainable in non-stabilizing solutions (assuming FW
and CW whiteboards) [9], this paper shows that self-stabilization prevents k-
quiescent solutions in any considered model, and even 0-quiescent solutions in
some particular models. Thus, our paper shed new light on the inherent difference
between non-stabilizing and self-stabilizing solutions of agent-based systems.

We would like to point out interesting open questions:

1. What is the exact quiescence number of the (Synch,FW, ∗)-model for the
k-gossip problem among anonymous agents? (besides being not smaller than
0 and not larger than k − 1)

2. What is the connection between the quiescence number and the topology ?
3. Does there exist a non-trivial non-stabilizing problem with quiescence num-

ber lower than k ?

References

1. Barriére, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Rendezvous and election of
mobile agents: impact of sense of direction. Theory of Computing Systems 40(2),
143–162 (2007)

2. Beauquier, J., Herault, T., Schiller, E.: Easy stabilization with an agent. In: Pro-
ceedings of the 5th Workshop on Self-Stabilizing Systems (WSS), pp. 35–51 (2001)

3. Blin, L., Gradinariu Potop-Butucaru, M., Tixeuil, S.: On the self-stabilization of
mobile robots in graphs. In: Proceedings of OPODIS, pp. 301–314 (2007)

4. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)
5. Dolev, S., Gouda, M.G., Schneider, M.: Memory requirements for silent stabilization.

Acta Inf. 36(6), 447–462 (1999)
6. Dolev, S., Schiller, E., Welch, J.: Random walk for self-stabilizing group communi-

cation in ad-hoc networks. In: Proceedings of SRDS, pp. 70–79 (2002)
7. Ghosh, S.: Agents, distributed algorithms, and stabilization. In: Proceedings of In-

ternational Computing and Combinatorics Conference (COCOON), pp. 242–251
(2000)

8. Herman, T., Masuzawa, T.: Self-stabilizing agent traversal. In: Proceedings of the
5th Workshop on Self-Stabilizing Systems (WSS), pp. 152–166 (2001)

9. Suzuki, T., Izumi, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Move-optimal
gossiping among mobile agents. Theoretical Computer Science 393(1–3), 90–101
(2008)

Gathering with Minimum Delay in Tree Sensor

Networks

Jean-Claude Bermond1,�, Luisa Gargano2,��, and Adele A. Rescigno2

1 MASCOTTE, joint project CNRS-INRIA-UNSA, Sophia-Antipolis, France
2 Dip. di Informatica ed Applicazioni, Universitá di Salerno, 84084 Fisciano, Italy

Abstract. Data gathering is a fundamental operation in wireless sensor
networks in which data packets generated at sensor nodes are to be
collected at a base station. In this paper we suppose that each sensor
is equipped with an half–duplex interface; hence, a node cannot receive
and transmit at the same time. Moreover, each node is equipped with
omnidirectional antennas allowing the transmission over distance R. The
network is a multi-hop wireless network and the time is slotted so that
one–hop transmission of one data item consumes one time slot. We model
the network with a graph where the vertices represent the nodes and two
nodes are connected if they are in the transmission/interference range
of each other. Due to interferences a collision happens at a node if two
or more of its neighbors try to transmit at the same time. Furthermore
we suppose that an intermediate node should forward a message as soon
as it receives it. We give an optimal collision free gathering schedule for
tree networks whenever each node has at least one data packet to send.

1 Introduction

A wireless sensor network is a multi-hop wireless network formed by a large
number of low-cost sensor nodes, each equipped with a sensor, a processor, a
radio, and a battery. Due to the many advantages they offer – e.g. low cost, small
size, and wireless data transfer – wireless sensor networks become attractive
to a vast variety of applications like space exploration, battlefield surveillance,
environment observation, and health monitoring.

A basic activity in a sensor network is the systematic gathering of the sensed
data at a base station for further processing. A key challenge in such operation is
due to the physical limits of the sensor nodes, which have limited power and un–
replenishable batteries. It is then important to bound the energy consumption
of data dissemination [10,18,24]. However, an other important factor to consider
in data gathering applications is the latency of the information dissemination
process. Indeed, the data collected by a node can frequently change thus making
essential that they are received by the base station as soon as it is possible
without being delayed by collisions [26].
� Partially supported by the CRC CORSO with France Telecom, by the European

FET project AEOLUS.
�� Work partially done while visiting INRIA at Sophia-Antipolis.

A. Shvartsman and P. Felber (Eds.): SIROCCO 2008, LNCS 5058, pp. 262–276, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Gathering with Minimum Delay in Tree Sensor Networks 263

Another application, which motivates this work, concerns the use in telecom-
munications networks a problem asked by France Telecom about “how to
provide Internet connection to a village” (see [6]). Here we are given a set of
communication devices placed in houses in a village (for instance, network inter-
faces that connect computers to the Internet). They require access to a gateway
(for instance, a satellite antenna) to send and receive data through a multi-hop
wireless network. Therefore, this problem is the same as data collection in sensor
network. Here the main objective is to minimize the delay.

In this paper, we will study optimal–time data gathering in tree networks.

1.1 Network Model

We adopt the network model considered in [3,12,17]. In this model each node is
equipped with an half–duplex interface, hence,

i) a node cannot receive and transmit at the same time.

Moreover, each node is equipped with omni directional antennas allowing trans-
mission over a distance R. This implies that for any given node in the network,
we can individuate its neighbors as those nodes within distance R from it, that
is, within its transmission/interference range. In this model,

ii) a collision happens at a node x if two or more of its neighbors try to transmit
at the same time.

However, simultaneous transmissions among pair of nodes can successfully occur
whenever conditions i) and ii) of the above interference model are respected. The
time is slotted so that one–hop transmission of one data item consumes one time
slot; the network is assumed to be synchronous. Moreover, following [12,15,26]
and contrarily to [3,17], we assume that no buffering is done at intermediate
nodes, that is each node forwards a message as soon as it receives it. Finally, it
is assumed that the only traffic in the network is due to data to be collected,
thus data transmissions can be completely scheduled.

Summarizing, the network can be represented by means of a direct graph
G = (V, A) where V represents the sensors (devices) nodes and A the set of
possible calls; i.e. an arc (u, v) ∈ A if v is in the transmission/interference range
of u. Throughout this paper we assume that all nodes have the same transmission
range, hence the graph G is a directed symmetric graph, e.g., (u, v) ∈ A if and
only if (v, u) ∈ A. The fact that there is no collision can be expressed by the fact
that two calls (u, v) and (u′, v′) are compatible (can be done in the same time
slot) iff d(u, v′) ≥ 2 and d(u′, v) ≥ 2 (i.e., both u and v′, and u′ and v have not
to be neighbors, by ii)).

The collision–free data gathering problem can be then stated as follows [26].

Data Gathering. Given a graph G = (V, A) and a base station (BS) s, for each
v ∈ V − {s}, schedule the multi-hop transmission of the data items sensed at v
to s so that the whole process is collision–free, and the time when the last data
is received by s is minimized.

264 J.-C. Bermond, L. Gargano, and A.A. Rescigno

We will actually study the related one–to-all personalized broadcast problem
in which the BS wants to communicate different data items to each other node
in the network.

One–to-all personalized broadcast: Given a graph G and a BS s, for each
node v �= s, schedule the multi-hop transmission from s to v of the data items
destined to v so that the whole process is collision–free, and the time when the
last data item is received at the corresponding destination node is minimized.

Solving the above dissemination problem is equivalent to solve data gathering
in sensor networks. Indeed, let T denote the delay, that is, the largest time–slot
used by a dissemination algorithm; a gathering schedule with delay T consists
in scheduling a transmission from node y to x during slot t iff the broadcasting
algorithm schedules a transmission from node x to y during slot T − t + 1, for
any t with 1 ≤ t ≤ T .

It should be noticed that our algorithms are centralized requiring the BS
perform a distinct topology learning phase and schedule broadcasting. When
requirements are more stringent, these algorithms may no longer be practical.
However, they still continue to provide a lower bound on the data collection time
of any given collection schedule.

1.2 Related Work

Much effort has been devoted to the study of efficient data gathering algorithms
taking into consideration various aspects of sensor networks [8]. The problem of
minimizing the delay of the gathering process has been recently recognized and
studied. The authors of [12] first afford such a problem; they use the same model
for sensor networks adopted in this paper. The main difference with our work is
that [12] mainly deals with the case when nodes are equipped with directional
antennas, that is, only the designed neighbor of a transmitting node receives the
signal while its other neighbors can safely receive from different nodes. Under
this assumption, [12] gives optimal gathering schedules for trees. An optimal
algorithm for general networks has been presented in [15] in the case that each
node has one packet of sensed data to deliver.

The work in [26] also deals with the latency of data gathering under the
assumption of unidirectional antennas; the difference with [12] is the assumption
of the possibility to have multiple channels between adjacent nodes. By adopting
this model an approximation algorithm with performance ratio 2 is obtained.

Fast gathering with omnidirectional antennas is considered in [1,3,4,5,7], un-
der the assumption of possibly different transmission and interference ranges,
that is, when a node transmits, all the nodes within a fixed distance dT in the
graph can receive while nodes within distance dI (dI ≥ dT) cannot listen to
other transmissions due to interference (in our paper dI = dT). Lower bounds
on the time to gather and NP-hardness proofs are given in [3]; an approximation
algorithm with approximation factor 4 is also presented. Paper [7] presents an
on–line gathering algorithm under the described model.

Gathering with Minimum Delay in Tree Sensor Networks 265

The case where dT = 1 and where each node has one packet to transmit
is solved for the line in [1], for the uniform grids in [4] and for trees when
furthermore dI = 1 in [5]. All the above papers allow buffering at intermediate
nodes.

Several papers deal with the problem of maximize the lifetime of the network
through topology aware placement [10,13], data aggregation [16,19,20,21], or
efficient data flow [11,18,23]. Papers [9,22,25] consider the minimization of the
gathering delay in conjunction with the energy spent to complete the process.

1.3 Paper Overview

We consider the model introduced in Section 1.1 and give optimal gathering
schedules in case the graph modeling the network is a line or a tree.

In Section 3 we shortly illustrate an optimal algorithm in case G is a line with
the BS s as one of its endpoints. The result was first presented in [12]; we report
it in our settings as a starting point for our result on trees.

In Section 4 we give an optimal algorithm in case the graph is a tree T with
one data item at each node, apart the source s.

We look at T as rooted at s and denote by T1, T2, · · · , Tm the subtrees of T
rooted at the sons of s.

Definition 1. For each i = 1, . . . , m, we denote by:
– si the son of s which is the root of Ti and is at level 1 in Ti,
– αi the number of nodes at level 2 in Ti,
– βi the number of nodes at level 3 or more in Ti.

Moreover, we define the shade of subtree Ti, for 1 ≤ i ≤ m, as τi = 1+2αi+3βi.

Let |Ti| represent the number of nodes in the subtree Ti, for i = 1, . . . , m.

Definition 2. Given i, j = 1, . . . , m with i �= j, we say that
– Ti ≺ Tj if either τi > τj or τi = τj and |Ti| > |Tj |,
– Ti = Tj if τi = τj and |Ti| = |Tj |.(they are not necessarily isomorphic)

Definition 3. Assume that T1 � T2 � . . . � Tm. Define

εT =
{ 1 if T1 = T2

0 otherwise
and Δi,j = |Ti| + |Tj| + βi − 1,

for each i, j = 1, . . . , m, with i �= j.

s

s1
s2

a1

b1 c1 d1

a2 b2 c2 d2 e2

Fig. 1.

266 J.-C. Bermond, L. Gargano, and A.A. Rescigno

Theorem 1. Suppose each node of a tree T has one data item and let n denote
the number of vertices of T . Assuming that T1 � T2 � . . . � Tm, we have that
the optimal gathering time is

T ∗(T) = max{n − 1, τ1 + εT , Δ1,2, Δ2,1, Δ1,3}.

Example 1. Let T be the tree in Fig.1 with BS s. We have: m = 2, |T1| = 5,
|T2| = 6, α1 = 1, β1 = 3, τ1 = 12, α2 = 5, β2 = 0, τ2 = 11, εT = 0, Δ1,2 = 13,
and Δ2,1 = 10. Hence, T1 ≺ T2 and, by Theorem 1, T ∗(T) = Δ1,2 = 13.

Due to space limits some proofs are omitted from this extended abstract; a full
version is in [2].

2 Mathematical Formulation

We now formally formulate the one-to-all personalized broadcast problem. Let
G = (V, A) be the directed symmetric graph that is obtained by replacing each
edge connecting two nodes u and v of the network with two directed arcs (u, v)
and (v, u). Furthermore, let s ∈ V be a special node that will be called the
source.

Each node v ∈ V − {s} is associated with an integer weight w(v) ≥ 0 that
represents the number of data items destined to node v. The set w = {w(v) | v ∈
V − {s}} represents the set of the weights of the nodes in V .

We need to schedule (time–label) the transmissions in order to create w(v)
collision–free routes from s to node v, for each v ∈ V − {s}.

Definition 4. Let p = (u0, · · · , uh) be a path in G. An increasing labeling L of
p is an assignment of integers, Lp(u0, u1) . . . , Lp(uh−1, uh), to the arcs of p
such that for j = 1, . . . , h − 1.

Lp(uj , uj+1) = Lp(uj−1, uj) + 1

The labeling is called t-increasing, for some integer t ≥ 1, if it is increasing and
Lp(u0, u1) = t.

Consider any set P of paths in G from s to (not necessarily pairwise distinct)
nodes in V −{s} together with the labellings Lp, for p ∈ P . Notice that any arc
a ∈ A can belong to any number of paths in P .

Definition 5. The labeling induced by P on the arcs of G consists, for each
(u, v) ∈ A of the multisets

L(u, v) = {Lp(u, v) | p ∈ P}.

Let N(u) be the set of neighbors of u in G, that is, N(u) = {x | (u, x) ∈ A} =
{x | (x, u) ∈ A}.

Gathering with Minimum Delay in Tree Sensor Networks 267

Definition 6. The labeling L induced by P on the arcs of G is called strictly
collision–free (SCF) if L is increasing and, for each (u, v) ∈ A it holds:

– L(u, v) is a set (e.g, any integer has at most one occurrence in L(u, v)),
– L(u, v) ∩ L(w, u) = ∅, for each w ∈ N(u),
– L(u, v) ∩ L(w, z) = ∅, for each w ∈ N(v) ∪ {v}, z ∈ N(w).

Definition 7. An instance of SCF labeling is a triple 〈G,w, s〉 where G is the
graph, s is the source, and w is the set of weights of the nodes in G.
A feasible solution for 〈G,w, s〉 is a pair (P , L) where:

– P is a set of w(v) paths (not necessarily distinct) from s to v in G, for each
v ∈ V − {s};

– L is a SCF–labeling induced by P.

An optimal solution (P∗, L∗) is a feasible solution minimizing the largest label
given to any arc of G.

The value attained by the optimal solution (P∗, L∗) for 〈G,w, s〉 is denoted
by T ∗(〈G,w, s〉) (or simply by T ∗(G) when w and s are clear from the context).

Example 2. In the tree T of Fig.1, let w(u) = 1 for each u �= s. A feasible solution
for 〈T,w, s〉 is the pair (P , L) where P = {pu | pu is the unique path from s to
u in T , u �= s} and the SCF labeling L is such that each path pu is labeled with
a tu-increasing labeling as follows: tb1 = 1, ta2 = 2, tb2 = 4, tc1 = 5, tc2 = 6,
td1 = 8, ts2 = 9, td2 = 10, ta1 = 11, te2 = 12, ts1 = 13.

As an example, we have
pb1 = (s, s1, a1, b1), with Lpb1

(s, s1) = tb1 = 1, Lpb1
(s1, a1) = 2, Lpb1

(a1, b1) =
3 L(s, s1) = {Lpb1

(s, s1), Lpc1
(s, s1), Lpd1

(s, s1), Lpa1
(s, s1), Lps1

(s, s1)} = {1, 5, 8,

11, 13}, L(s, s2) = {Lpa2
(s, s2), Lpb2

(s, s2), Lpc2
(s, s2), Lpd2

(s, s2), Lpe2
(s, s2),

Lps2
(s, s2)} = {2, 4, 6, 9, 10, 12}.

Notice that minimizing the largest label is equivalent to minimize the time
needed by the algorithm. Indeed, one can just consider solutions where all labels
in {1, · · · , T } are used: If some integer c is never used, we can decrease by 1 the
value of each label c′ ≥ c + 1 in the considered feasible solution.

3 Lines

In this section we present an optimal algorithm to solve the SCF–labeling prob-
lem for an instance 〈G,w, s〉, where G is a line, s is one of its end points, and
node weights are arbitrary non negative integers, that is, w(v) ≥ 0 for each
v �= s. The optimal value given in Theorem 2 was already given in [12] (theorem
4.1); however, we restate the algorithm in our notation since it is a starting point
for the algorithm on trees given in the next section.

Let G be the line of length n with nodes 0, 1, · · · , n and let (i, i + 1), for
i = 0, · · · , n − 1, be the connection between subsequent nodes. Assume that the
source node is s = 0 and w(n) > 0 (otherwise delete the end vertices of the line
with weight 0).

268 J.-C. Bermond, L. Gargano, and A.A. Rescigno

Property 1. A solution (P , L) of 〈G,w, s〉 is feasible iff
1) The labeling L induced by P is increasing,
2) for each p,q ∈ P with Lq(s, 1) ≥ Lp(s, 1): if p leads from s to node h,

with 1 ≤ h ≤ n, then
Lq(s, 1) ≥ Lp(s, 1) + min{3, h}. (1)

The following notation will be used in the algorithm description.

– Set a path (resp. a t–path) to node v: establish a path from s to v together
with its increasing labeling (resp. t–increasing labeling);

– A node v �= s is completed: if w(v) paths from s to v have been set.

Theorem 2. [12] For a line G with nodes {s = 0, 1, . . . , n} and and w(i) ≥ 0
for i = 1, . . . , n, it holds

T ∗(G) = max
1≤i≤n

Mi,

where M1 = w(1) + 2w(2) + 3
∑

j≥3 w(j), M2 = 2w(2) + 3
∑

j≥3 w(j), and
Mi = i − 3 + 3

∑
j≥i w(j) if i ≥ 3.

When each sensor node of the line has at least one request to be completed,
Theorem 2 provides a simpler form of the optimal label (i.e. minimum time) .

Corollary 1. If w(i) ≥ 1, for i = 1, . . . , n, then T ∗(G) = M1 = w(1)+2w(2)+
3

∑n
j=3 w(j).

Table 1. The SCF labeling algorithm on a line

LINE-labeling (G,w, s)
• Set P = ∅, k = 1.
• while there is a non completed node, do

- Let i be the largest node which is not completed
(e.g i = max{j | 1 ≤ j ≤ n, w(j) > 0}.

- Set a k–path to i in G, call it pi.
- Let P = P ∪ {pi}.
- Let w(i) = w(i) − 1.
- Set k = k + min{3, i}.

• return (P , L), where L is the labeling induced by P .

4 Trees

Let T = (V, E) be any tree and s be a fixed node in T . We assume that each
node has exactly one path to be set, i.e., w(v) = 1 for each v ∈ V − {s} (recall
that the source has weight w(s) = 0). We will show how to obtain an optimal
labeling for 〈T,w, s〉. The extention to the case w(v) ≥ 1 can be easly obtained.

Definition 8. Given a tree T . We shall denote by |T | the size of T in terms of
the weights of the nodes in T , that is

Gathering with Minimum Delay in Tree Sensor Networks 269

|T | =
∑

v∈V (T)

w(v).

Notice that |T | represents the number of paths to be set in T . Since we assume
that w(v) = 1 for each v ∈ V −{s} then the algorithms starts with |T | = |V |−1.
Root T at s and let T1, T2, · · · , Tm be the subtrees of T rooted at the sons of s.

We also notice that in case m = 1, then T consists of a root of degree 1 and
T1 as the only subtree. A one-to-all personalized optimal broadcasting in T is
obtained by applying the optimal algorithm LINE-labeling to the line L obtained
from T by replacing the w(j) vertices at distance j in T by a vertex j with weight
w(j) in L. Then by Corollary 1 the number of steps is T ∗(L) = 1 + 2α1 + 3β1.

The main idea of the algorithm consists in setting, whenever that is possible,
a path to a node in the subtree Ti having the largest shade value τi = 1 + 2αi +
3βi (Definition 1). However, we have to be careful and, even if the algorithm
is relatively simple, the proof of the value of gathering time in Theorem 1 is
involved.

4.1 The Algorithm

In order to describe the SCF labeling algorithm, we introduce the following ter-
minology. Unless otherwise stated, in the following we assume that the subtrees
are numbered according to the ranking given in Definition 2, that is T1, · · · , Tm

is a reordering of the subtrees of T such that T1 � · · · � Tm.

– One step: one time–slot.
– A node v �= s is completed if a path from s to v has been set.
– Set a path (resp. a t-path) to Ti: set a path (resp. a t-path) to a node v

in Ti which is the furthest from s among all nodes in Ti which are not yet
completed.
When we set a path to some Ti the corresponding value |Ti| of the remaining
weights in Ti will be decreased by one and also αi and βi if they are non
zero.

– Ti is completed: if a path has been set to each node in Ti, that is |Ti| = 0.
– Step t is called idle if no t-path is set.
– Ti is available at step t (e.g. a t–path to Ti can be set) only if no path was set

to a node v in Ti at some step t′ s.t. t′ < t < t′ + min{3, �(v)}, where �(v) is
the level of v in T . Said otherwise, if at some step t′ we set a path to a node
v in Ti, then Ti is not available at step t′ + j where 1 ≤ j < min{3, �(v)}. in
particular if v is at a level at least 3, then Ti is not available at steps t′ + 1
and t′ + 2.

The SCF labeling algorithm is given in Tab.2. Following is an informal de-
scription of the behavior of the algorithm during a generic step t ≥ 1: Let Ti be
an available subtree that precedes all the other available subtrees of T according
to the order relation �; set a t–path to Ti; update the shade of Ti.

270 J.-C. Bermond, L. Gargano, and A.A. Rescigno

Table 2. The SCF labeling algorithm on trees

TREE-labeling (T,w, s) [T has non empty subtrees T1, . . . , Tm and root s]
1. Set P = ∅ and t = 1

Let ti = 1 for i = 1, . . . , m [ti is the minimum step to set a path to Ti]
Set M = {1, . . . , m} [M represents the set of subtrees not yet completed]

2. while M �= ∅
2.1 Rename the indices in M so that for the permuted subtrees T1 � . . . � T|M|
2.2 if there exists i ≤ |M | with ti ≤ t then

Let i be the smallest such index (e.g. t1, . . . , ti−1 > t, Ti � . . . � T|M|).
if NOT (|M | = 2, i = 1, β1 = 1, α2 > β2 = 0, t2 ≤ t + 1) then

[Execute the generic step of the algorithm]
- Set a t-path to Ti and call it p
- P = P ∪ {p}.
- If Ti is completed then M = M − {i} .
- ti = t + min{3, �}, where � is the length of p,

- Update Ti, eg.: τi = τi − min{3, �}, w(si) = w(si) −
{

1 if � = 1
0 oth.

αi = αi −
{

1 if � = 2
0 oth.

, βi = βi −
{

1 if � ≥ 3
0 oth.

.

2.3 else [The special case: |M | = 2, i = 1, β1 = 1, α2 > β2 = 0, t2 ≤ t + 1]
- Set a t-path to T1 and call it p
- Set a t + 1-path to s2 and call it q1

- Set a t + 2-path to T2 and call it q2

- P = P ∪ {p, q1,q2}.
- t1 = t + 3 and t2 = t + 4.
- Update T1 and T2

(e.g. τ1 = τ1 − 3, β1 = 0, τ2 = τ2 − 3, w(s2) = 0, α2 = α2 − 1).
- If α2 = 0 then M = {1} .
- t = t + 2.

2.4 t = t + 1.
3. return (P , L)

Example 3. The solution (P , L) given in Example 2 is the same one gets by
applying the TREE-labeling algorithm on the tree T of Fig.1. Notice that steps
t = 8, 9, 10 correspond to the special case of point 2.3 of the algorithm.

The TREE-labeling algorithm sets, at step t, a t-path to Ti only if Ti is available.
We can then conclude that

Lemma 1. The solution (P , L) returned by algorithm TREE-labeling on 〈T,w, s〉
is feasible.

4.2 Preliminary Results

We establish now some facts that will be used to prove the optimality of the
proposed algorithm.

Fact 1. For any subtree Ti with |Ti| > 1 it holds that 2|Ti| − 1 ≤ τi ≤ 3|Ti| − 3.

Gathering with Minimum Delay in Tree Sensor Networks 271

Fact 2. Let Ti � Tj.
– If τi = τj and Ti ≺ Tj then αi > αj and βi < βj.
– Ti = Tj (e.g., τi = τj and |Ti| = |Tj|) iff αi = αj and βi = βj.

Fact 3. If Ti � Tj then βj ≤
{ |Ti| − 2 if |Ti| ≥ 2

0 otherwise
.

The quantities Δi,j introduced in Definition 3 satisfy the following properties.

Fact 4. For any i, j it holds Δi,j − τi = |Tj | − |Ti|
Fact 5. Δi,j ≥ max{|T |, τ1 + εT } only if either i = 1 and j = 2, 3 or i = 2 and
j = 1.

Proof. Assume first either i ≥ 3 or i = 2 and j ≥ 3. We have |T |− |Ti|− |Tj| ≥
|T1| or |T | − |Ti| − |Tj | ≥ |T2|. By Fact 3 we know that βi < min{|T1|, |T2|} − 1.
Hence, in any case we get

|T | − Δi,j = |T | − |Ti| − |Tj | − βi + 1 > 2,

which implies Δi,j < |T | ≤ max{|T |, τ1 + εT }.
Assume now i = 1 and j ≥ 4; supposing, by contradiction, Δ1,j ≥ |T | and

Δ1,j ≥ τ1 + εT , we have

|T2| + |T3| ≤ |T | − |T1| − |Tj | = |T | − Δ1,j + β1 − 1 ≤ β1 − 1 ≤ |T1| − 3. (2)

From the assumption that Δ1,j ≥ τ1 + εT and by Fact 4 we get |T1| ≤ |Tj|. This,
(2), and Fact 1 imply

τj ≥ 2|Tj| − 1 ≥ 2|T1| − 1 ≥ 2(|T2| + |T3|) + 5 >
2
3
(τ2 + τ3) + 5 ≥ 4

3
τ3 + 5 > τ3

thus contradicting the assumption T3 � Tj for any j ≥ 4.
�

4.3 A Lower Bound

Let T be such that T1 � T2 � . . . � Tm. Define

Max(T) = max{|T | = |V | − 1, τ1 + εT , Δ1,2, Δ2,1, Δ1,3}
Lemma 2. Assuming that T1 � T2 � . . . � Tm, we have T ∗(T) ≥ Max(T).

Proof. Any algorithm needs to set a path to each node, hence T ∗(T) ≥ |T |.
By Definition 1 and Corollary 1, the shade τi of Ti is the minimum label that

can be assigned when only paths to the nodes in Ti are set. Since paths must
be set to all nodes in each Ti, for i = 1, · · · , m, and τ1 ≥ τ2 ≥ · · · ≥ τm we have
that T ∗(T) ≥ τ1.

Furthermore, if T1 = T2 then at least τ1 + 1 labels are necessary.
Consider now Δi,j . For each path to a node at level at least 3 in Ti no path to

some other node in Ti can be set in the following 2 steps. Moreover, at most one
of the following two steps can be used to set a path to Tj, except for the eventual
step in which a path to the root of Tj is set and immediately after a path to
some other node in Tj is set. The remaining step can be used to set a path to
some T� with � �= i, j. Hence, any algorithm has at least βi − 1 −

∑
� �=i,j |T�| idle

steps, which implies T ∗(T) ≥ |T | + βi − 1 −
∑

� �=i,j |T�| = Δi,j . By Fact 5, we
get that Max(T) lower bounds T ∗(T).
�

272 J.-C. Bermond, L. Gargano, and A.A. Rescigno

4.4 Optimality

We show now that the SFC–labeling algorithm for trees is optimal, that is, the
maximum label assigned to any arc of T is T (T) ≤ Max(T) thus matching the
lower bound of Theorem 2.

We first recall that we are in the hypothesis that the weight of each node is
1. The order in which nodes are chosen as end–points of the paths set by the
algorithm implies that the largest label assigned to an arc of T is always to be
searched among those assigned to the arcs outgoing the root s of T . Therefore,
it coincides with the largest t for which a t–path is set in T .

Lemma 3. Let t denote the largest integer such that a t–path is set in T during
the execution of the SFC–labeling algorithm. The largest label assigned by the
algorithm to any arc of T is T (T) = t.

By the above Lemma, we need to show that the largest t such that a t–path is
set in T is upper bounded by Max(T). The proof will proceed by induction. We
will consider the first steps of the algorithm mainly those which send to different
subtrees (before the step where we send again to a subtree to which we already
sent) and we will apply the induction on the tree T ′ obtained by deleting the
vertices completed in these first steps. For that we give the following definition.

Definition 9. We denote the fact that the algorithm on T starts by setting k
paths to pairwise different subtrees of T (that is, it sets a t–path to some node
vi in Ti, for i = 1, . . . , k) by

〈T1 . . . Tk〉
We denote by T ′ the updated tree, resulting from 〈T1 . . . Tk〉, that is, T ′ has
subtrees T ′

1 . . . , T ′
k, T ′

k+1 . . . , T ′
m, where

- T ′
i denotes the updated subtree Ti after the i–path to vi has been set (that is,

w′(vi) = 0 and |T ′
i | = |Ti| − 1, for i = 1, . . . , k

- T ′
k+1 = Tk+1, . . . , T

′
m = Tm.

Notice that the subtrees T ′
1 . . . , T ′

m, are not necessarily ordered according to the
relation �. Let i1, i2, · · · , im be a permutation of 1, . . . , m such that T ′

i1 � . . . �
T ′

im
; we will always consider permutations that maintain the original order on

equal subtrees, that is
if T ′

ij
= T ′

i�
then ij < i�. (3)

We denote by α′
i, β

′
i, τ

′
i the parameters of T ′

i . In particular (unless the special
case k = 2, β1 = 1, α2 > β2 = 0, T3 = ∅, and T2 is available) we have for
i = 1, . . . , k:

α′
i = αi −

{ 1 if βi = 0, αi ≥ 1
0 otherwise

, β′
i = βi −

{ 1 if βi ≥ 1
0 otherwise

,

τ ′
i = τi −

⎧⎪⎨
⎪⎩

3 if βi ≥ 1
2 if βi = 0, αi ≥ 1
1 if |Ti| = 1
0 if Ti = ∅

.

Gathering with Minimum Delay in Tree Sensor Networks 273

Fact 6. Assume 〈T1 . . . Tk〉 and that NOT (k = 2, β1 = 1, α2 > β2 = 0, T3 = ∅,
and T2 is available). For any 1 ≤ i < j ≤ k.

1) If τi > τj then τ ′
i ≥ τ ′

j ;
2) if Ti ≺ Tj and T ′

j ≺ T ′
i then βj = 0, βi ≥ 2, |Ti| < |Tj |, and τi = τj + 1.

Fact 7. Assume 〈T1 . . . Tk〉 with either k ≥ 4 or k = 3 and T3 � T ′
1, T

′
2:

i) |T | ≥ τ1 + k − 2;
ii) |Ti| ≥ β1 + 1, for each i = 2, . . . , k;
iii) |Ti| ≥ β2 + 1, for each i = 3, . . . , k.

The following lemma together with lower bound of Lemma 2 prove Theorem 1.

Lemma 4. Assume T1 � . . . � Tm. The solution returned by algorithm TREE-
labeling satisfies

T (T) ≤ Max(T) (4)

Proof. At any step of the algorithm the tree can have any number m ≥ 1 of
subtrees of positive weight. When we say that the algorithm sets a t–path to a
subtree Ti and |Ti| = 0 at step t, this means that no t–path is actually set (e.g.
t is an idle step).

We first analyze the special case of the algorithm in which m = 2, β1 = 1,
β2 = 0 and T2 is available. So τ1 > τ2 and α1 ≥ α2 − 1. The first two steps of
the algorithm are 〈T1T2〉, where the path set to T2 is a path to s2 (the root of
T2). Let T ′ be the tree resulting after 〈T1T2〉, at the third step a path to T ′

2 is
set. Hence, the first three steps of the algorithm are: 〈T1T2〉〈T ′

2〉
Let T 2 be the tree resulting after 〈T1T2〉〈T ′

2〉. Next the algorithm on T pro-
ceeds as follows

〈T 2
1 T 2

2 〉〈T 3
1 T 3

2 〉 . . . 〈T �
1T �

2 〉 . . . 〈T α1+1
1 T α1+1

2 〉〈T α1+2
1 〉.

where T � is the tree resulting from T �−1 after the 2 steps 〈T �−1
1 T �−1

2 〉. To see this,
we notice that in each T � it holds T �

1 ≺ T �
2 , since τ2

1 = τ1 − 3 > τ2 − 3 = τ2
2 and

τ �
1 = τ �−1

1 − 2 > τ �
2 = max{τ �−1

2 − 2, 0}, for � > 2. Moreover, in the hypothesis
of this case α1 ≥ α2 − 1, which implies that T �

2 = ∅ for � > α2. Finally, by the
hypothesis we have

εT = 0, |T | = 3 + α1 + α2 ≤ 3 + 2α1 + 1 = τ1, and Δ1,2, Δ2,1 ≤ |T |.
Hence, Max(T) = τ1; but T (T) = 3 + 2α1 + 1 = τ1 = Max(T).

The rest of the proof is devoted to show that T (T) ≤ Max(T) for each tree.
The proof is by induction on the shade of T1, (recall that T1 � T2 � . . . � Tm). As
a base consider the trees of the special case above and trees T such that τ1 = 1; in
the latter case, we have |Ti| = 1 for each i = 1, . . . , m and T (T) = |T | = Max(T).

Suppose now that (4) holds for any tree in which the shade of the first subtree
(according to the relation �) is at most τ1 − 1; we prove that (4) holds for T .

Notice that we are assuming that T does not belong to the special case (e.g.,
m = 2, β1 = 1, β2 = 0, and T2 is available) and that |T1| ≥ 2.

We separate four cases according to the value attaining Max(T).

274 J.-C. Bermond, L. Gargano, and A.A. Rescigno

Case 1: Max(T) = Δ1,2 > max{τ1 + εT , |T |}.
In such a case we know that β1 > 1, otherwise Δ1,2 = |T1| + |T2| + β −

1 ≤ |T |; hence, the first tree steps of the algorithm are (including the case
|T3| = 0) 〈T1T2T3〉.

Let T ′ be the tree resulting after 〈T1T2T3〉. We will show that after the first
3 steps 〈T1T2T3〉, the algorithm on T proceeds as on input T ′ and

Max(T ′) ≤ Max(T) − 3. (5)

This implies the desired inequality T (T) = 3+T (T ′) ≤ 3+Max(T ′) = Max(T).
By definition of Δ1,2 and using Δ1,2 > |T |, we get

|T | − |T1| − |T2| < β1 − 1. (6)

By Fact 4 and using Δ1,2 > τ1, we get

|T1| < |T2|. (7)

By (6) and Fact 1, we get

τ3 < 3|T3| ≤ 3(|T | − |T1| − |T2|) < 3(β1 − 1) = (3β1 + 2α1 + 1) − (2α1 + 4),

from which, since α1 ≥ 1, it follows

τ3 < τ1 − 6 = τ ′
1 − 3. (8)

Moreover, by (6) and (7) we have

|T2| ≥ |T1|+1 ≥ β1+α1+2 ≥ β1+3 > (|T |−|T1|−|T2|)+4 ≥ |T3|+|T4|+4; (9)

which, by Fact 1, implies τ2 ≥ 2|T2|−1 > 2(|T3|+|T4|)+7 ≥ 4 min{|T3|, |T4|}+7.
Noticing that Fact 1 implies 4|T4| > τ4 and 4|T3| > τ3 ≥ τ4, we get

τ2 ≥ τ4 + 8. (10)

From (8) and (10) and recalling that τ1 ≥ τ2, we obtain that in the tree T ′,
resulting after 〈T1T2T3〉:

T ′
1 ≺ T ′

3, T ′
1 ≺ T ′

4 = T4, T ′
2 ≺ T ′

4 = T4.

Moreover, we have
T ′

2 ≺ T ′
3;

indeed, if we assume T ′
2 � T ′

3 we have either |T2| = |T3| or, by Fact 6, |T3| > |T2|
contradicting (9).

We notice that T ′
1 �= T ′

2, since by (7) they have different weights. Hence, by
the definition of ≺ (cfr. Definition 2), we get that the only possible orderings on
the the subtrees of T ′ are:

T ′
1 ≺ T ′

2 ≺ T ′
3, T ′

1 ≺ T ′
2 ≺ T ′

4, T ′
2 ≺ T ′

1 ≺ T ′
3, T ′

2 ≺ T ′
1 ≺ T ′

4.

Gathering with Minimum Delay in Tree Sensor Networks 275

Moreover, both sequences of steps 〈T1T2T3〉〈T ′
1T

′
2〉 and 〈T1T2T3〉〈T ′

2T
′
1〉 are

possible during the execution of the algorithm on T ; in particular if T ′
2 ≺ T ′

1 we
know by Fact 6 that β2 = 0.

Hence, after the first 3 steps, the algorithm on T proceeds as on input T ′. For
T ′ we have: τ ′

1 = τ1 − 3 (since β1 > 1),

|T ′| = |T | −
{

3 if |T3| > 0
2 otherwise

, εT ′ = εT = 0 (since |T1| < |T2|).

In case T ′
1 ≺ T ′

2, it holds Δ′
1,2 = Δ1,2 − 3,

Δ
′

2,1 =
{

Δ2,1 − 3 if β2 > 0
|T ′

2| + |T ′
1| − 1 < |T ′| if β2 = 0 , Δ′

1,3, Δ
′
1,4 < Δ1,2 − 3,

where the last inequality follows from (9).
In case T ′

2 ≺ T ′
1, by Fact 6 we have β2 = 0, β1 ≥ 1 and τ1 > τ2; hence

τ ′
2 = τ2 − 2 = τ1 − 3 and

Δ′
1,2 = Δ1,2−3, Δ′

2,i = |T ′
2|+|T ′

i |+β′
2−1 = |T ′

2|+|T ′
i |−1 < |T ′| (i = 1, 3, 4).

Summarizing, in both cases T ′
1 ≺ T ′

2 and T ′
2 ≺ T ′

1, inequality (5) holds.
Due to space limits, the proofs of the other cases:
Max(T) = Δ2,1 > max{τ1 + εT , |T |}, Max(T) = Δ1,3 > max{τ1 + εT , |T |},

and Max(T) = max{τ1 + εT , |T |} are omitted from this extended abstract.
�

5 Conclusion

In this paper we give a relatively simple protocol for trees with w(u) = 1 packet
to transmit. The results can be easily extended to the case where all the w(u) are
positive (or at least there is no more than two consecutive nodes with weights 0).
It might be that the algorithm is optimal for any weight function by replacing τi

with Mi (see Theorem 2); but the proof seems more complicated. It will be also
interesting to find the complexity of the gathering problem for general graphs
without buffering (with buffering it is known to be NP-hard).

References

1. Bermond, J.-C., Corrêa, R., Yu, M.: Gathering algorithms on paths under interfer-
ence constraints. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006.
LNCS, vol. 3998, pp. 115–126. Springer, Heidelberg (2006)

2. Bermond, J.-C., Gargano, L., Rescigno, A.: Gathering with Minimum Delay in
Sensor Networks, INRIA TR (2008), http://hal.inria.fr/inria-00256896/fr/

3. Bermond, J.-C., Galtier, J., Klasing, R., Morales, N., Pérennes, S.: Hardness
and approximation of gathering in static radio networks. Parallel Processing Let-
ters 16(2), 165–183 (2006)

4. Bermond, J.-C., Peters, J.: Efficient gathering in radio grids with interference. In:
AlgoTel 2005, pp. 103–106, Presqu’̂ıle de Giens (2005)

5. Bermond, J.-C., Yu, M.: Optimal gathering algorithms in multi-hop radio tree-
networks with interferences (manuscript, 2008)

http://hal.inria.fr/inria-00256896/fr/

276 J.-C. Bermond, L. Gargano, and A.A. Rescigno

6. Bertin, P., Bresse, J.-F., Le Sage, B.: Accès haut débit en zone rurale: une solution
”ad hoc”. France Telecom R&D 22, 16–18 (2005)

7. Bonifaci, V., Korteweg, P., Marchetti-Spaccamela, A., Stougie, L.: An Approxi-
mation Algorithm for the Wireless Gathering Problem. In: Arge, L., Freivalds, R.
(eds.) SWAT 2006. LNCS, vol. 4059. Springer, Heidelberg (2006)

8. Chong, C.-Y., Kumar, S.P.: Sensor networks: Evolution, opportunities, and chal-
lenges. Proc. of the IEEE 91(8), 1247–1256 (2003)

9. Coleri, S., Varaiya, P.: Energy Efficient Routing with Delay Guarantee for Sensor
Networks. Wireless Networks (to appear)

10. Dasgupta, K., Kukreja, M., Kalpakis, K.: Topology-aware placement and role as-
signment for energy-efficient information gathering in sensor networks. In: Proc.
IEEE ISCC 2003, pp. 341–348 (2003)

11. Falck, E., Floreen, P., Kaski, P., Kohonen, J., Orponen, J.P.: Balanced data gather-
ing in Energy-constrained sensor networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.)
ALGOSENSORS 2004. LNCS, vol. 3121, pp. 59–70. Springer, Heidelberg (2004)

12. Florens, C., Franceschetti, M., McEliece, R.J.: Lower Bounds on Data Collection
Time in Sensory Networks. IEEE J. on Sel. Ar. in Com. 22(6), 1110–1120 (2004)

13. Ganesan, D., Cristescu, R., Beferull-Lozano, B.: Power-efficient sensor placement
and transmission structure for data gathering under distortion constraints. In:
IPSN 2004, pp. 142–150 (2004)

14. Gargano, L.: Time Optimal Gathering in Sensor Networks. In: Prencipe, G., Zaks,
S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 7–10. Springer, Heidelberg (2007)

15. Gargano, L., Rescigno, A.A.: Optimally Fast Data Gathering in Sensor Networks.
In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 399–411.
Springer, Heidelberg (2006)

16. Gupta, H., Navda, V., Das, S.R., Chowdhary, V.: Efficient gathering of correlated
data in sensor networks. In: Proc. of ACM MobiHoc 2005, pp. 402–413 (2005)

17. Gasieniec, L., Potapov, I.: Gossiping with Unit Messages in Known Radio Net-
works. In: IFIP TCS 2002, pp. 193–205 (2002)

18. Ho, B., Prasanna, V.K.: Constrained flow optimization with application to data
gathering in sensor networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGO-
SENSORS 2004. LNCS, vol. 3121, pp. 187–200. Springer, Heidelberg (2004)

19. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., Silva, F.: Directed
diffusion for wireless sensor networking. IEEE/ACM Trans. Netw. 11(1), 2–16
(2003)

20. Krishnamachari, B., Estrin, D., Wicker, S.: Modeling data-centric routing in wire-
less sensor networks. In: Proc. of IEEE INFOCOM (2002)

21. Lindsey, S., Raghavendra, C.: Pegasis: Power-efficient gathering in sensor wireless
networks. In: Proc. of IEEE Aerospace Conference (2002)

22. Lindsey, S., Raghavendra, C., Sivalingam, K.M.: Data gathering algorithms in sen-
sor networks using energy metrics. IEEE Trans. on Par. and Distr. Sys. 13(9),
924–935 (2002)

23. Padmanabh, K., Roy, R.: Multicommodoty flow fased maximum lifetime routing
in wireless sensor network. In: Proc. of IEEE ICPADS 2006, pp. 187–194 (2006)

24. Shen, C., Srisathapornphat, C., Jaikaeo, C.: Sensor information networking archi-
tecture and applications. IEEE Personal Communications, 52–59 (2001)

25. Yu, Y., Krishnamachari, B., Prasanna, V.: Energy-latency tradeoffs for data gath-
ering in wireless sensor networks. In: Proc. of IEEE INFOCOM 2004 (2004)

26. Zhu, X., Tang, B., Gupta, H.: Delay efficient data gathering in sensor networks. In:
Jia, X., Wu, J., He, Y. (eds.) MSN 2005. LNCS, vol. 3794, pp. 380–389. Springer,
Heidelberg (2005)

Centralized Communication in Radio Networks

with Strong Interference

Frantǐsek Galč́ık�

Institute of Computer Science,
P.J. Šafárik University, Faculty of Science,
Jesenná 5, 041 54 Košice, Slovak Republic

frantisek.galcik@upjs.sk

Abstract. We study communication in known topology radio networks
with the presence of interference constraints. We consider a real-world
situation, when a transmission of a node produces an interference in the
area that is larger than the area, where the transmitted message can be
received. For each node, there is an area, where a signal of its transmission
is too low to be decoded by a receiver, but is strong enough to interfere
with other incoming simultaneous transmissions. Such a setting is mod-
elled by a newly proposed interference reachability graph that extends
the standard graph model based on reachability graphs. Further, focus-
ing on the information dissemination problem in bipartite interference
reachability graphs, we introduce interference ad-hoc selective families as
an useful combinatorial tool. They are a natural generalization of ad-hoc
selective families. Adopting known algorithms and techniques, we show
how to construct small interference ad-hoc selective families in the case
when, for each node, the ratio of the only-interfering neighbors to the
other neighbors is bounded. Finally, taking into account the maximum
degree in an underlying interference reachability graph, we study the
broadcasting problem in general radio networks.

1 Introduction

A radio network is a collection of autonomous stations that are referred to as
nodes. The nodes communicate via sending messages. Each node is able to receive
and transmit messages. However, a node can transmit messages only to the
nodes, which are located within its transmission range. We say that a node
w belongs to the transmission range of a node v (w ∈ T (v)) if and only if a
message transmitted by v can reach the node w. Hence, the transmission range
of v is a set of the network nodes that are located at positions, where the signal
transmitted by v has enough intensity and quality to be successfully decoded. All
nodes of the radio network operate at the same frequency. Owing to properties
of the radio communication medium, simultaneous transmissions of two or more
nodes cause interference in the area that is in the range of those transmitted
� Research of the author is supported in part by Slovak VEGA grant number

1/3129/06.

A. Shvartsman and P. Felber (Eds.): SIROCCO 2008, LNCS 5058, pp. 277–290, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

278 F. Galč́ık

signals. However in some practical applications, a transmitted signal can reach
an area, where decoding of the signal is not possible due to its low intensity, but
the signal is intensive enough to interfere with other simultaneous transmissions.
We define an interference range I(v) of a node v as follows. A node w belongs
to the interference range of a node v (w ∈ I(v)) if and only if a transmission
of v can interfere with other transmissions reaching the node w. It is natural to
assume that T (v) ⊆ I(v). Indeed, if a signal is intensive enough to be decoded,
it is intensive enough to cause interference with other transmissions.

Most of the literature concerning communication in radio networks (e.g. [10],
[5], [9]) assume that the transmission range T (v) and the interference range I(v)
of a node v are the same, i.e. T (v) = I(v) for each network node v. Such a
communication network can be modelled by a reachability graph. A reachability
graph is a directed graph G = (V, E). The vertex set V corresponds to the
network nodes and two vertices u, v ∈ V are connected by an edge e = (u, v) if
and only if the node v is in the transmission range of a node u, i.e. v ∈ T (u). This
model is also referred to as the graph model of radio networks. If the transmission
power of all nodes is the same, then a network can be modelled by an undirected
graph.

A communication model, in which the interference range of a node is larger
than its transmission range, was considered by Bermond et al. in [2]. The au-
thors studied time complexity of the gathering task in known topology radio
networks. They defined transmission and interference range of a node with re-
spect to distances in an underlying communication graph. Particularly, denote
by distG(u, v) the length (the number of edges) of a shortest path between
nodes u and v in the graph G. Fix the numbers dT and dI . The number dT ,
dT ≥ 1, is called a transmission distance and the number dI , dI ≥ dT , is called
an interference distance. The transmission range T (v) of a node v is defined
as T (v) = {w|dist(v, w) ≤ dT } and the interference range I(v) of a node v as
I(v) = {w|dist(v, w) ≤ dI}. Note that the standard graph model corresponds to
the case when dT = dI = 1.

It is easy to see that there are such settings, where the model introduced by
Bermond et al. is not appropriate, e.g. due to large obstacles or signal reflexes.
That means, that there are settings, for which it is difficult or even impossible
to express the transmission and interference ranges of the nodes with respect
to distances in an underlying communication graph. In this paper we focus on
a new model of the communication environment. Particularly, we shall assume
that I(v) is an arbitrary set of network nodes satisfying T (v) ⊆ I(v). In such
a setting, the communication network can be modelled by a directed graph
G = (V, ET ∪ EI), called an interference reachability graph (IRG), such that
ET ∩EI = ∅. Two vertices u, v ∈ V are connected by an edge e = (u, v) ∈ ET (a
transmission edge) if and only if the node v is in the transmission range of the
node u, i.e. v ∈ T (u). The node u is referred to as a transmission neighbor of the
node v. Similarly, two vertices u, v ∈ V are connected by an edge e = (u, v) ∈ EI

(an interference edge) if and only if the node v is in the interference range of
the node u but not in its transmission range, i.e. v ∈ I(u) \ T (u). The node u is

Centralized Communication in Radio Networks with Strong Interference 279

referred to as an interference neighbor of the node v. Note that no message can
be brought forward by an interference edge in compare to a transmission edge.
We shall denote the spanning subgraph G(ET) as a transmission subgraph. For
practical reasons, we assume that the transmission subgraph G(ET) is strongly
connected. Hence there is an oriented path, using only transmission edges, from
each network node to any other network node. Observe that each radio network
modelled by the model introduced by Bermond et al. can be described by an
IRG. It implies that the proposed model is more general.

Communication in radio networks is considered to be synchronous. In partic-
ular, the network nodes work in synchronized steps (time slots) called rounds.
In every round, a node can act either as a receiver or as a transmitter. A node u
acting as transmitter sends a message, which can be potentially received by ev-
ery node in its transmission range. In a given round, a node, acting as a receiver,
receives a message if and only if it is located in the transmission range of exactly
one transmitting node and in the interference range of none transmitting node.
Otherwise, no message is received by the receiving node. The received message
is the same as the message transmitted by the transmitting neighbor.

2 Centralized Broadcasting

We focus on the broadcasting - one of the most studied and important commu-
nication primitives. The goal of broadcasting is to distribute a message, called a
source message, from one distinguished node, called a source, to all other nodes.
Remote nodes of the network are informed via intermediate nodes. The time
(number of rounds), that is required to complete an operation, is an important
efficiency measure and is a widely studied parameter of mostly every communi-
cation task.

It is known that assumptions about initial knowledge of nodes significantly
influence the time required to complete a communication task. In this paper we
shall assume that each node possesses full knowledge of the network topology,
i.e. every node possesses a labelled copy of an underlying IRG. Communication
in radio networks with full knowledge of nodes (known topology radio networks)
is referred to as centralized communication. In this setting, an execution of a
broadcasting algorithm can be seen as a process controlled by a central monitor.
Thus the goal is to design a polynomial time (tractable) algorithm, that for
a given (interference) reachability graph G and a source node s produces a
schedule of transmissions, referred to as a radio broadcast schedule, that is as
short as possible and disseminates the source message to all network nodes.

Centralized broadcasting in radio networks modelled by a reachability graph,
i.e. in the standard graph model, has been intensively studied. In [9], Kowalski
and Pelc presented an algorithm that produces a radio broadcast schedule of the
length O(D+log2 n), where D is the diameter of a given underlying reachability
graph and n denotes the number of nodes. In the view of the lower bound
Ω(log2 n) for graphs with diameter 2 given by Alon et al. [1] and, a trivial lower
bound D, this algorithm is asymptotically optimal.

280 F. Galč́ık

The rest of the paper is devoted to the information dissemination problem in
known topology radio networks modelled by IRGs.

2.1 Difficulty of Fast Broadcasting in IRG

It is easy to see that the broadcasting task can be always completed in O(n)
rounds, where n is the number of network nodes. Hence there is a radio broad-
cast schedule such that each node is informed at most O(n) rounds after first
transmission of the source node. Indeed, in each round, we select one informed
node that is a transmission neighbor of at least one uninformed node. Only the
selected node is allowed to transmit in this round. Thus all uninformed nodes in
its transmission range receive the source message and become informed. On the
other hand, there is an IRG with diameter 2 such that the broadcasting time is
bounded by Ω(n) rounds. The (2 · m + 1)-node graph Gm = (Vm, ET ∪ EI) is
defined as follows:

– V (Gm) = {s, a1, a2, . . . , am, b1, b2, . . . , bm}
– ET (Gm) = {(s, ai), (ai, bi)|1 ≤ i ≤ m}
– EI(Gm) = {(ai, bj)|1 ≤ i 	= j ≤ m}

Let s to be a source of the broadcasting. Each node ai becomes informed after
first transmission of s. The node bi can be informed only by a transmission of ai.
However, if a node ai transmits, no other node bj, j 	= i, can receive the message
due to the presence of interference edges. It follows, that at least m + 1 = Ω(n)
rounds are necessary to complete the broadcasting.

Therefore, in order to study the time complexity of the broadcasting task in
the proposed interference model, we should consider other parameters of IRG,
or introduce new appropriate parameters expressing the presence of interference
edges in the IRG.

3 Interference Ad-Hoc Selective Families

Following the work of Clementi et al. [3], that is devoted to selective structures
related to the standard model of radio networks, we define the notion of inter-
ference ad-hoc selective family and show some useful properties of it. As we will
discuss later, this notion is closely related to the considered interference model
of radio networks. In the case, when a considered collection of set-pairs satisfies
a specific property (defined later), we show the existence of small interference
ad-hoc selective families by a probabilistic argument. Finally, we design a de-
terministic polynomial-time algorithm that computes small interference ad-hoc
selective family for a given input collection of set-pairs. Algorithms presented in
this section extends the work [3] of Clementi et al.

The (interference) ad-hoc selective families are related to intensively studied
combinatorial structures called selectors (see e.g. [6], [4], or [8]). One of their
applications is in communication algorithms under the standard graph model
of radio networks [7] in the case when the nodes are not aware of the network

Centralized Communication in Radio Networks with Strong Interference 281

topology. The k-selectors, defined and investigated by Chrobak et al. in [7], can
be seen as a weaker variant of interference ad-hoc selective families introduced
in this section.

Definition 1. Let F = {(T1, I1), (T2, I2), . . . , (Tm, Im)} to be a collection of set-
pairs such that Ti ∩ Ii = ∅ and Ti 	= ∅, for all i = 1, . . . , m. Denote U(F) =⋃m

i=1 Ti ∪ Ii. A family S = {S1, S2, . . . , Sk} of subsets of U(F) is said to be
selective for F if and only if for any (Ti, Ii) there is a set Sj such that |Ti∩Si| = 1
and Ii ∩ Si = ∅. We say that the set Sj is selective for (Ti, Ii).

There is a relationship between interference ad-hoc selective families and the
broadcasting task. To see it, suppose that a proper subset of network nodes
is already informed. Initially, only the source is informed. Let VS to be a set
of informed network nodes that have an uninformed node within transmission
range. Let VR to be a set of uninformed nodes that are located within trans-
mission ranges of informed nodes. Interference ad-hoc selective families can be
utilized to construct a schedule of transmissions such that all nodes in VR be-
come informed by transmissions of nodes in the set VS . Indeed, consider a
collection F = {(Tv, Iv)|v ∈ VR} such that Tv = {u ∈ VS |v ∈ T (u)} and
Iv = {u ∈ VS |v ∈ I(u)}. Note that U(F) ⊆ VS . Let S = {S1, S2, . . . , Sk} to
be an interference ad-hoc selective family for F . Observe, that if exactly the
nodes of Si transmit in the i-th round of a schedule, all nodes in VR become
informed in at most k = |S| rounds. Hence it seems useful to search for small
selective families. Obviously, we can always construct a selective family of the
size min{|F|, |U(F)|} by a trivial construction. On the other hand, for any n,
there is an instance F , |F| = |U(F)| = n, such that it is not possible to construct
interference ad-hoc selective family of the size smaller than n. These instances
correspond to the example of ”slow” IRG in the section 2.1. It follows, as for the
broadcasting in IRG, that a new parameter characterizing collection F should
be introduced and considered.

Definition 2. Let F = {(T1, I1), (T2, I2), . . . , (Tm, Im)} to be a collection of set-
pairs such that Ti ∩ Ii = ∅ and Ti 	= ∅, for all i = 1, . . . , m. We say that r is
an interference ratio of the pair (Ti, Ii) if and only if |Ii| ≤ r · |Ti|. Analogously,
we say that r(F) is an interference ratio of the collection F , if and only if
|Ii| ≤ r(F) · |Ti|, for all i = 1, . . . , m.

Intuitively, the notion of the interference ratio is introduced in order to express a
ratio of the interference edges to the transmission edges of a node. Now, using a
probabilistic argument, we show that there are small interference ad-hoc selective
families.

Theorem 1. Let F = {(T1, I1), (T2, I2), . . . , (Tm, Im)} to be a collection of set-
pairs such that Ti ∩ Ii = ∅, Ti 	= ∅, and Δmin ≤ |Ti| + |Ii| ≤ Δmax, for all i =
1, . . . , m. There is a family S of the size O((1+ r(F)) · ((1+ log(Δmax/Δmin))) ·
log |F|) that is selective for F .

282 F. Galč́ık

Proof. Let us define F ′ = {(Ti, Ii) ∈ F , |Ti| + |Ii| = 1}. Since Ti 	= ∅, we have
that |Ti| = 1 and |Ii| = 0, for all members of F ′. It is easy to see that the set
S0 =

⋃
(Ti,Ii)∈F ′ Ti is selective for F ′. Therefore, in what follows we can assume

that Δmin ≥ 2.
For each j ∈ {
logΔmin�, . . . ,
logΔmax�}, consider a family Sj of l sets,

where an unknown parameter l will be determined at the end of the proof. Each
set S ∈ Sj is constructed by picking each element of U(F) independently with
the probability 1/2j.

Fix a pair (Ti, Ii) ∈ F . Let j to be an integer such that 2j−1 ≤ |Ti|+ |Ii| < 2j .
Consider a set S ∈ Sj . Let us estimate the probability that the set S is selective
for (Ti, Ii):

Pr[|Ti ∩ S| = 1 ∧ Ii ∩ S = ∅] = |Ti| ·
1
2j

·
(

1 − 1
2j

)|Ti|+|Ii|−1

> |Ti| · 1
2j

·
(

1 − 1
2j

)2j
(1)
≥ 1

2 · (r(F) + 1)
·
(

1 − 1
2j

)2j
(2)
≥ 1

8 · (r(F) + 1)

The inequality (1) holds because 2j−1 ≤ |Ti| + |Ii| ≤ (r(F) + 1) · |Ti|. The
inequality (2) follows from the fact that

(
1 − 1

t

)t ≥ 1
4 , for t ≥ 2.

The sets in Sj are constructed independently. Thus the probability that none
of l sets of the family Sj is selective for (Ti, Ii) is upper-bounded by the expression

(
1 − 1

8 · (r(F) + 1)

)l

≤ e−
l

8·(r(F)+1)

due to the inequality (1 − x)y ≤ e−x·y, for 0 < x < 1 and y > 1.
Finally, let us define a family S as the union of the families Sj , for j ∈

{
logΔmin�, . . . ,
logΔmax�}. Now we estimate the probability that S is not
selective for F :

Pr[S is not selective for F] ≤
∑

(Ti,Ii)∈F
Pr[S is not selective for ((Ti, Ii))]

≤
∑

(Ti,Ii)∈F
e−

l
8·(r(F)+1) = |F| · e−

l
8·(r(F)+1)

It follows, that the probability of S not being selective for F , is less than 1
for l > 8 · (r(F) + 1) · ln |F |. It implies the existence of an interference ad-hoc
selective family S of the size O((1+r(F)) · ((1+log(Δmax/Δmin))) · log |F|).
�

Using de-randomization method of conditional probabilities, we show that a
selective family of the size O((1 + r(F)) · ((1 + log(Δmax/Δmin))) · log |F|) can
be constructed deterministically in the polynomial time.

At first, we fix an ordering of elements of U(F), i.e. U(F) = {u1, u2, . . . , un}.
For S ⊆ U(F), let us denote δi(S) = S ∩ {ui, ui+1, . . . , un}. Finally, let us fix
a pair (T, I) ∈ F and let Δ to be a power of 2 (i.e. Δ = 2j , for some j) such

Centralized Communication in Radio Networks with Strong Interference 283

that Δ/2 ≤ |T | + |I| < Δ. For a fixed set S ⊆ {u1, u2, . . . , uj−1}, we define the
conditional probabilities

Yj(S, (T, I)) = Pr[S ∪ X ∪ {uj} is selective for (T, I)]

Nj(S, (T, I)) = Pr[S ∪ X is selective for (T, I)]

where X is a subset of {uj+1, . . . , un} constructed by picking each element
of {uj+1, . . . , un} independently at random with the probability 1/Δ, that is,
Pr[uk ∈ X] = 1/Δ.

Lemma 1. The conditional probabilities Yj(S, (T, I)) and Nj(S, (T, I)) can be
computed in O(n) time.

Utilizing those conditional probabilities, we design an algorithm that computes
an interference ad-hoc selective family for a given input collection of set-pairs
F . Algorithm is based on the procedure IASF. It produces an interference ad-
hoc selective family for a given collection F = {(T1, I1), (T2, I2), . . . , (Tm, Im)}
satisfying the property that there is a power of 2 denoted as Δ (i.e. Δ = 2j ,
for some j ≥ 2) such that the condition Δ/2 ≤ |Ti| + |Ii| < Δ is valid for all
members of F .

Input : Δ = 2j , F = {(T1, I1), (T2, I2), . . . , (Tm, Im)}
Output: S = {S1, S2, . . . , Sk}
let n to be the number of elements of U(F) = {u1, u2, . . . , un};
while F �= ∅ do

S ← ∅;
for i ← 1 to n do

Yi ←
∑

(T,I)∈F Yi(S, (T, I)) ;

Ni ←
∑

(T,I)∈F Ni(S, (T, I)) ;

if Ni < Yi then S ← S ∪ {ui};
end
F ← F \ {(T, I) ∈ F | S is selective for (T, I)};
S ← S ∪ S;

end
return S

Algorithm 1. Procedure IASF

Theorem 2. Let F = {(T1, I1), (T2, I2), . . . , (Tm, Im)} to be a collection of set-
pairs such that Ti ∩ Ii = ∅, Ti 	= ∅, and Δmin ≤ |Ti| + |Ii| ≤ Δmax, for all
i = 1, . . . , m. There is a deterministic algorithm that produces an interference
ad-hoc selective family S of the size O((1+r(F))·((1+log(Δmax/Δmin)))·log |F|)
for the given collection F . Computation takes polynomial time, more precisely
O((1 + log(Δmax/Δmin)) · r(F) · (log |F|) · |F| · |U(F)|2).

Proof. The goal of the procedure IASF is to compute an interference ad-hoc
selective family for a specific subset of the input collection F . For each j ∈
{
logΔmin�, . . . ,
logΔmax�}, the procedure IASF is executed with the two in-
put parameters: Δ = 2j and a subset of the collection F (denoted as Fj), that is

284 F. Galč́ık

restricted to those set-pair (T, I) satisfying Δ/2 ≤ |T | + |I| < Δ. The resulting
selective collection is the union of all selective families returned by executions
of IASF. As in the proof of the theorem 1, we focus only on j such that j ≥ 2.
Indeed, for j = 1 the construction of a selective set is trivial.

At first, we show that each execution of IASF produces a selective family of
the size at most O((1 + r(Fj)) · log |Fj|). Let us fix considered input parameters
of IASF: Δ = 2j and the collection Fj. In the following, we shall analyze a
single execution of the while loop in the procedure IASF. Hence, the symbols F
and S will correspond to the variables of the algorithm. Note that the variable
(collection) F remains unchanged during the analyzed part of the execution. It
is modified only at the end of each iteration of the while loop.

Let W to be a set constructed by picking each element of U(F) independently
with the probability 1/Δ. Denote as E(X) the expected number of set-pairs
(T, I) ∈ F that are selected by W . Analogously, for a set Y , Y ⊆ U(F), and
an integer i, i ≥ 1, satisfying Y ∩ δi(U(F)) = ∅, we denote as E(X |(Y, i))
the expected number of set-pairs (T, I) ∈ F that are selected by a random set
WY,i. The set WY,i is the union of the set Y and a set of independently (with
probability 1/Δ) picked elements of the set δi(U(F)). Clearly, it follows from
the proof of the theorem 1 that

E(X |(∅, 1)) = E(X) ≥ |F|
8 · (r(F) + 1)

.

Now we prove by induction on i that the inequality E(X |(S, i + 1)) ≥ E(X) is
valid after i (i ∈ {0, . . . , |U(F)|}) iterations of the for loop in IASF :

– For i = 0, it holds S = ∅. Since E(X |(∅, 1)) = E(X), the claim is true.
– Suppose that the claim is true for all j, j < i. Recall that the symbol

S corresponds to the set variable S (containing a subset of U(F)) in the
procedure IASF after i iterations of the for loop. Denote S′ = S \ {ui}. Due
to the definition of the expected value, it holds for i > 0 that

E(X |(S′, i)) =
1
Δ

E(X |(S′ ∪ {ui}, i + 1)) +
(
1 − 1

Δ

)
E(X |(S′, i + 1)).

Obviously, A = qB + (1 − q)C ⇒ A ≤ max{B, C}, for A, B, C ≥ 0 and
0 ≤ q ≤ 1. Thus it follows

E(X |(S′, i)) ≤ max{E(X |(S′ ∪ {ui}, i + 1)), E(X |(S′, i + 1))}.

Moreover, the definition of the expected value implies Yi = E(X |(S′ ∪
{ui}, i + 1)) and Ni = E(X |(S′, i + 1)). The choice, between adding the ele-
ment ui to S or not, depends on the values Yi and Ni. Since the larger value
is chosen, it follows that E(X |(S, i + 1)) = max{Yi, Ni} = max{E(X |(S′ ∪
{ui}, i+1)), E(X |(S′, i+1))} ≥ E(X |(S′, i)). Finally, the inductive hypoth-
esis implies

E(X |(S, i + 1)) ≥ E(X |(S′, i)) ≥ E(X).

Centralized Communication in Radio Networks with Strong Interference 285

It follows from the previous claim for i = |U(F)|, that in each iteration of
the while loop such a set S is constructed that at least
 |F|

8·(r(F)+1)� set-pairs of
the collection variable F (in execution of IASF) are selected by S. Thus after k
iterations of the while loop, the number of unselected set-pairs in the collection
variable F can be upper-bounded by the expression

(
1− 1

8·(r(Fj)+1)

)k ·|Fj |, where
Fj is input of IASF. Since, for z ≥ 1, it holds ln (1 − 1

z) ≤ − 1
z , this expression

is lower than 1 for k at least (8 · r(Fj) + 1) · |Fj |. Finally, we get that at most
O((r(Fj)+1)·|Fj|) iterations of the while loop are sufficient to select all set-pairs
of the collection Fj. Hence the interference ad-hoc selective family constructed
by one execution of IASF has the size O((1 + r(Fj)) · log |Fj |).

There are
1 + log(Δmax/Δmin)� executions of IASF. Considering the def-
inition of the interference ratio r(F), it is easy to see, that if Fj ⊆ F then
r(Fj) ≤ r(F). This concludes the proof that the constructed interference ad-hoc
selective family has the size O((1+ r(F)) · ((1+ log(Δmax/Δmin))) · log |F|).
�

4 Centralized Broadcasting and Interference Ad-Hoc
Selective Families

Now, we sketch a simple algorithm producing a radio broadcast schedule for
radio networks modelled by arbitrary IRGs.

The algorithm works as follows. At first, we split the network nodes into lay-
ers L0, L1, . . . , Lecc with respect to their distances to a fixed source s, where
Li = {v ∈ V |dist(s, v) = i} and ecc is the eccentricity of the source s in the
transmission subgraph. The source message is disseminated in phases layer by
layer. During the i-th phase, the source message is received by the nodes of
the layer Li owing to transmissions of the nodes in the layer Li−1. Particu-
larly, for each node v of Li, we construct a set-pair (Tv, Iv) such that Tv =
{w ∈ Li−1|(w, v) ∈ ET } and Iv = {w ∈ Li−1|(w, v) ∈ EI}. Furthermore,
for a collection F i = {(Tv, Iv)|v ∈ Li}, an interference ad-hoc selective fam-
ily Si = {Si

1, . . . , S
i
m} is obtained as an output of the algorithm described in the

proof of the theorem 2. Finally, transmissions of the phase i are scheduled in
such a way, that in the j-th round of the phase i exactly the nodes Si

j ⊆ Li−1

transmit the source message. Thus the i-th phase takes totally |Si| rounds.

Theorem 3. Let G = (V, ET ∪ EI) to be an IRG. There is a deterministic
polynomial time algorithm that for a given source node s produces a schedule of
the length O((1 + log(Δmax/Δmin)) · R(s)), where R(s) =

∑ecc−1
i=0 ((1 + r(F i)) ·

log |F i|) with ecc standing for the eccentricity of the node s in the transmission
subgraph of G.

Note, that there are IRGs for which the utilized layer by layer information dis-
semination approach is not suitable. For instance, consider the following undi-
rected IRG Gm = (V, ET ∪ EI), where

286 F. Galč́ık

– V = {s, v1, . . . , vm, w1, . . . , wm}
– ET = {(s, vi), (vi, wi)|i = 1, . . . , m} ∪ {(vi, vj), (wi, wj)|1 ≤ i 	= j ≤ m}
– EI = {(vi, wj)|1 ≤ i 	= j ≤ m}

Observe, that the ratio of the incident interference edges to the incident trans-
mission edges is at most 1, for each node of the constructed graph Gm. It is easy
to see, that it is not possible to complete the broadcasting task from the node s
in less then m+1 rounds utilizing the layer-by-layer approach. Indeed, all nodes
of the layer L1 = {v1, . . . , vm} have to transmit in separate rounds. On the other
hand, broadcasting with the source s can be completed in 3 rounds:

1. the source s transmits and informs all nodes of the layer L1
2. the node v1 transmits and informs the node w1
3. the node w1 transmits and informs the remaining nodes.

Although this simple algorithm is not suitable for all IRGs, its combination
with some graph analysis or heuristics can lead to algorithms that produce radio
broadcast schedules of sufficient length (for practical applications), at least for
a large subclass of radio networks.

5 Time Complexity of the Centralized Broadcasting in
IRG with Respect to the Maximum Degree

Let Δ to be the maximum degree of IRG, i.e. the largest degree (the total number
of incident, transmission and interference, edges of a node) over all networks
nodes. In this section, we shall investigate the impact of the parameter Δ to the
time complexity of the centralized broadcasting in IRGs.

Theorem 4. Let G = (VS ∪ VR, ET ∪ EI) to be a directed bipartite IRG, where
ET are the transmission edges and EI are the interference edges. Suppose that
all nodes in VS are informed, i.e. they possess the source message, and the nodes
in VR are uninformed. Let Δ to be the maximum degree in the IRG G, i.e.
Δ = max{degT (v)+degI(v)|v ∈ VS∪VR}, where degT (v) = |{(u, v)|(u, v) ∈ ET ∨
(v, u) ∈ ET }| and degI(v) = |{(u, v)|(u, v) ∈ EI ∨ (v, u) ∈ EI}|. If degT (v) ≥ 1
for all v ∈ VR, then the following holds:

– all nodes in VR can be informed in at most Δ2 rounds,
– if deg(v) = 1 for all v ∈ VS, then all nodes in VR can be informed in at most

2 · Δ rounds.

Proof. At first, we prove that the first part of the claim holds. Assignment of
transmission rounds for the nodes of the set VS can be obtained by a simple
greedy algorithm Greedy-rounds-assignment (Algorithm 2). The goal of the al-
gorithm is to assign a non-colliding round number r(v) ∈ {1, . . . , Δ2} to each
node v. Two invariants are valid during the computation of assignments:

– For the nodes of the set VS , the number r(v) denotes a round, in which the
node v transmits the source message.

Centralized Communication in Radio Networks with Strong Interference 287

Input : G = (VS ∪ VR, ET ∪ EI) - bipartite IRG, nodes in VS are informed,
nodes in VR are uninformed

Output: round assignment r : (VS ∪ VR) −→ {1, . . . , Δ2}
initially, r(v) is unassigned for each v ∈ VS ∪ VR;
AS ← ∅;
AR ← ∅;
while AS �= VS do

pick a random node v from VS \ AS;
BI ← {r(u)|u ∈ AR ∧ (v, u) ∈ ET ∪ EI};
N ← {u|u ∈ VR \ AR ∧ (v, u) ∈ ET };
BN ← {r(u)|u ∈ AS ∧ ∃w ∈ N, (u, w) ∈ EI ∪ ET)};
B ← BI ∪ BN ;
r(v) ← any element of the set {1, . . . , Δ2} \ B;
AS ← AS ∪ {v};
foreach u ∈ VR \ AR such that (v, u) ∈ ET do

r(u) ← r(v);
AR ← AR ∪ {u} ;

end
end
return assignment r

Algorithm 2. Algorithm Greedy-rounds-assignment

– For the nodes of the set VR, the value r(v) denotes a round, in which the
node v receives the source message.

Note that a node v ∈ VR can receive the source message also in other rounds
than r(v). The algorithm GRA produces an assignment r as a result of the
following computation. In each iteration, we pick a node v ∈ VS such that r(v)
is unassigned. The set variables AS and AR contain only the nodes of the sets VS

and VR, respectively. Each node w, that is a member of VS or VR, has already
defined the value r(w). For the picked node v, a set of colliding transmission
rounds B is computed. The set B contains the round numbers of all nodes with
assigned round number that are in the transmission or interference range of the
node v. These round numbers are colliding due to the invariant property defined
for the nodes in the set VR. Particularly, the round number means a round
when the source message is received for sure. Moreover, in order to inform all
uninformed nodes in the transmission range of the picked node v, i.e. the nodes
of set variable N with unassigned round numbers, we have to guaranty that
none of their (transmission or interference) neighbors transmits in the round
r(v). This achieved by adding their round numbers to the set of colliding rounds
B. The picked node v is a neighbor of at most Δ other nodes. Each of them
adds to the set B at most Δ − 1 colliding round numbers. Hence, it holds that
|B| ≤ Δ(Δ − 1), and we can pick a non-colliding round number from the set
{1, . . . , Δ2} \ B. It is easy to see, that if each node v ∈ VS transmits the source
message in the round r(v) then all nodes in VR become informed in at most Δ2

rounds. It concludes the proof of the first part of the claim.

288 F. Galč́ık

Now we prove the second part of the claim. Observe, that if degT (v) = 1 for all
v ∈ VS , then in the algorithm GRA the set B of colliding round number contains
at most 2 ·Δ−1 rounds. Thus, we can modify the algorithm GRA in such a way
that assigned round number is picked from the set {1, . . . , 2 · Δ} \ B. Finally,
transmissions according to the computed assignment ensure that all nodes in VR

become informed in at most 2 · Δ rounds.
�

In [5], Ga̧sieniec et al. discussed centralized communication in radio networks
(assuming the standard model without extended interference). They presented
algorithms that produce a radio broadcast schedule of the length O(D+Δ·log n)
and D + O(log3 n), for a reachability graph G. Algorithms are based on the
gathering spanning tree and can be reformulated as follows:

Theorem 5. Let G′ = (VS ∪VR, E) to be an undirected bipartite graph. Suppose
that all nodes in VS are informed (possess the source message) and the nodes in
VR are uninformed. Let n = |VS ∪ VR| and denote as

– AS(n) the maximal length of a schedule produced by an algorithm AS ensur-
ing that all nodes in VR become informed due to transmissions of the nodes
in VS,

– AF (n) the maximal length of a schedule produced by an algorithm AF ensur-
ing that all nodes in the set VR become informed due to transmissions of the
nodes in VS under the following assumption: deg(v) = 1, for all v ∈ VS ∪VR.

Let G = (V, E) to be a reachability graph (no extended interference). There
is an algorithm (schema) that produces a radio broadcast schedule of the length
O(AF (n) · D + AS(n) · log n), where n = |V |.

Now, we show how to realize centralized broadcasting in radio networks (with
extended interference) modelled by an IRG.

Theorem 6. Let G = (V, ET ∪ EI) to be an IRG with the maximum degree Δ.
There is a deterministic polynomial time algorithm that for a given source node
s produces a radio broadcast schedule of the length O(ΔD+min{Δ, log Δ·log n}·
Δ log n).

Proof. We utilize the schema of the theorem 5 for the transmission subgraph
of a given IRG G. Due to the presence of interference edges, we cannot apply
algorithms for the standard ”non-interference” model. However observe, that
the algorithm presented in the second part of proof of the theorem 4 produces
a schedule such that AF (n) = O(Δ). Moreover, the algorithm presented in the
first part of the proof can be used as the algorithm AS , in order to produce
schedules such that AS(n) = O(Δ2). Another choice for the algorithm AS is to
apply the algorithm presented in the theorem 3 that leads to a schedule such
that AS(n) = O(Δ · log Δ · log n). Note that this algorithm provides shorter
schedules than the former algorithm in the case when Δ = Ω(log2 n).
�

One can easily show that it is possible to construct an IRG with the maximum
degree Δ such that the broadcasting time is lower-bounded by Ω(Δ ·D) rounds.

Centralized Communication in Radio Networks with Strong Interference 289

6 Conclusion

In this paper, we introduced a new model (an extension of the standard graph
model) of radio networks that reflects a situation when a transmission of a
node causes interference in an area where the decoding of this transmission
is impossible. We focused on the broadcasting problem in the newly proposed
model. Designed algorithms, one of them based on the introduced notion of
interference ad-hoc selective families, can be seen as a first step to study the
efficiency of communication in this model.

The evident open problem is design of optimal communication (broadcast-
ing, gossiping, etc.) algorithms with respect to parameters of an underlying IRG
that express the presence of interference edges in an appropriate way. This could
answer the question how the presence of interference edges makes the commu-
nication process more difficult (e.g. slower) in compare to the communication
under the standard graph model.

References

1. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcasting.
Journal of Computer and System Sciences 43, 290–298 (1991)

2. Bermond, J.-C., Galtier, J., Klasing, R., Morales, N., Perennes, S.: Hardness and
approximation of gathering in static radio networks. Parallel Processing Letters 16,
165–184 (2006)

3. Clementi, A.E.F., Crescenzi, P., Monti, A., Penna, P., Silvestri, R.: On comput-
ing ad-hoc selective families. In: Goemans, M.X., Jansen, K., Rolim, J.D.P., Tre-
visan, L. (eds.) RANDOM 2001 and APPROX 2001. LNCS, vol. 2129, pp. 211–222.
Springer, Heidelberg (2001)

4. De Bonis, A., Ga̧sieniec, L., Vaccaro, U.: Generalized framework for selectors with
applications in optimal group testing. In: Baeten, J.C.M., Lenstra, J.K., Parrow,
J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 81–96. Springer,
Heidelberg (2003)

5. Ga̧sieniec, L., Peleg, D., Xin, Q.: Faster communication in known topology radio
networks. In: Proc. 24th Annual ACM Symposium on Principles of Distributed
Computing (PODC 2005), pp. 129–137 (2005)

6. Chlebus, B., Kowalski, D.: Almost optimal explicit selectors. In: Lískiewicz, M.,
Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 270–280. Springer, Heidelberg
(2005)

7. Chrobak, M., Ga̧sieniec, L., Rytter, W.: Fast broadcasting and gossiping in radio
networks. Journal of Algorithms 43(2), 177–189 (2002)

8. Indyk, P.: Explicit constructions of selectors and related combinatorial structures,
with applications. In: Proc., 13th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 697–704 (2002)

9. Kowalski, D., Pelc, A.: Optimal deterministic broadcasting in known topology radio
networks. Distributed Computing 19, 185–195 (2007)

10. Pelc, A.: Broadcasting in radio networks. In: Stojmenovic, I. (ed.) Handbook of
Wireless Networks and Mobile Computing, pp. 509–528. John Wiley and Sons,
Inc., New York (2002)

290 F. Galč́ık

A Appendix

Lemma 1.The conditional probabilities Yj(S, (T, I)) and Nj(S, (T, I)) can be
computed in O(n) time.

Proof. Evaluation of the conditional probabilities Yj(S, (T, I)) and Nj(S, (T, I))
is based on the following equalities. In these equalities, we use α to denote
|δj(T)| + |δj(I)|.

– δj(T) = 0

Yj(S, (T, I)) = Nj(S, (T, I)) =

{(
1 − 1

Δ

)|δj(I)| |T ∩ S| = 1 ∧ I ∩ S = ∅
0 otherwise

– δj(T) ≥ 1
• uj ∈ T

Yj(S, (T, I)) =
{(

1 − 1
Δ

)α−1 (T ∪ I) ∩ S = ∅
0 otherwise

Nj(S, (T, I))=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 |(T ∪ I) ∩ S| ≥ 2
0 |T ∩ S|=0 ∧ |I∩S|=1(
1 − 1

Δ

)α−1 |T ∩S|=1 ∧ |I∩S|=0

0 |(T ∪ I) ∩ S| = 0 ∧
|δj(T)| = 1

(|δj(T)| − 1) · 1
Δ ·

(
1 − 1

Δ

)α−2 |(T ∪ I) ∩ S| = 0 ∧
|δj(T)| ≥ 2

• uj ∈ I
Yj(S, (T, I)) = 0

Nj(S, (T, I)) =

⎧⎪⎪⎨
⎪⎪⎩

0 |(T ∪ I) ∩ S| ≥ 2
0 |T ∩ S| = 0 ∧ |I ∩ S| = 1(
1 − 1

Δ

)α−1 |T ∩ S| = 1 ∧ |I ∩ S| = 0
|δj(T)| · 1

Δ ·
(
1 − 1

Δ

)α−2 |(T ∪ I) ∩ S| = 0

• uj /∈ T ∪ I

Yj(S, (T, I))
Nj(S, (T, I)) =

⎧⎪⎪⎨
⎪⎪⎩

0 |(T ∪ I) ∩ S| ≥ 2
0 |T ∩ S| = 0 ∧ |I ∩ S| = 1(
1 − 1

Δ

)α |T ∩ S| = 1 ∧ |I ∩ S| = 0
|δj(T)| · 1

Δ ·
(
1 − 1

Δ

)α−1 |(T ∪ I) ∩ S| = 0

�

Fast Radio Broadcasting with Advice

David Ilcinkas1,�, Dariusz R. Kowalski2, and Andrzej Pelc3,��

1 CNRS, LaBRI, Université Bordeaux I, France
david.ilcinkas@labri.fr

2 Department of Computer Science, The University of Liverpool, United Kingdom
darek@csc.liv.ac.uk

3 Département d’informatique, Université du Québec en Outaouais, Canada
pelc@uqo.ca

Abstract. We study deterministic broadcasting in radio networks in
the recently introduced framework of network algorithms with advice.
We concentrate on the problem of trade-offs between the number of bits
of information (size of advice) available to nodes and the time in which
broadcasting can be accomplished. In particular, we ask what is the mini-
mum number of bits of information that must be available to nodes of the
network, in order to broadcast very fast. For networks in which constant
time broadcast is possible under complete knowledge of the network we
give a tight answer to the above question: O(n) bits of advice are suf-
ficient but o(n) bits are not, in order to achieve constant broadcasting
time in all these networks. This is in sharp contrast with geometric radio
networks of constant broadcasting time: we show that in these networks
a constant number of bits suffices to broadcast in constant time. For ar-
bitrary radio networks we present a broadcasting algorithm whose time
is inverse-proportional to the size of advice.

Keywords: radio network, distributed algorithm, deterministic broad-
casting, advice.

1 Introduction

The Framework and the Problem
We study deterministic broadcasting in radio networks in the recently introduced
[17] framework of network algorithms with advice. This paradigm permits to
investigate the minimum amount of information (size of advice) that nodes of
the network have to be given in order to accomplish some distributed task with a
given efficiency. In our present context the task is broadcasting in radio networks
and the measure of efficiency is time.

A radio network is a collection of sites (stations) equipped with wireless trans-
mission and receiving capabilities, with a distinguished node s called the source.
� This work was done during the stay of David Ilcinkas at the Research Chair in Dis-

tributed Computing of the Université du Québec en Outaouais and at the University
of Ottawa, as a postdoctoral fellow.

�� Research partially supported by NSERC discovery grant and by the Research Chair
in Distributed Computing at the Université du Québec en Outaouais.

A. Shvartsman and P. Felber (Eds.): SIROCCO 2008, LNCS 5058, pp. 291–305, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

292 D. Ilcinkas, D.R. Kowalski, and A. Pelc

The topology of a radio network is modeled as a directed graph G = (V, E),
where nodes in V represent sites of the network and oriented edges in E corre-
spond to wireless connections. It is assumed that there is a directed path from the
source to every other node. The existence of an edge (u, v) means that v is within
the reach of u. We say that u is an in-neighbor of v and v is an out-neighbor of
u. Nodes that are not neighbors must communicate via intermediate (relaying)
nodes. Similarly as in most papers in the literature on radio networks, we assume
that communication is synchronous, i.e., all nodes have internal clocks that tick
at the same rate, measuring consecutive time steps, referred to as rounds. All
clocks show the same round number at any given time.

At any round every node can be either in the transmitting or in the receiving
mode, i.e., a node cannot transmit and receive messages during the same round.
When a node v transmits in round i, its message is delivered during this round
to all out-neighbors of v. However, if w is an out-neighbor of v, this message
is heard by w, i.e., w receives the message correctly, if and only if the node v
is the only in-neighbor of w that transmits during the round i. Otherwise a
collision occurs at w and the message is not heard. An important property of
radio networks is the collision detection capability, i.e., the ability of a node to
differentiate collision from silence in a given round. All our results hold both
with this assumption and without it. Indeed, our positive results (algorithms)
are valid even without collision detection, and our impossibility results are valid
even assuming this capability.

Among the large class of (arbitrary) radio networks, an important subclass
consists of geometric radio networks (GRN). In the case of an approximately
flat region without large obstacles, nodes that can be reached from u are those
within a circle of radius r centered at u, and the positive real r, called the
range of u, depends on the power of the transmitter located at u. Reachability
graphs corresponding to such radio networks are called geometric radio networks.
More precisely, they are defined as follows. We assume that there is a constant
number ρ of possible powers of transmitters, thus we fix a set R = {r1, ..., rρ} of
positive reals, r1 < ... < rρ, called ranges. Let C be a set of points in the plane
with a distinguished source. Points of C are nodes of the graph (representing
radio stations). Each point u ∈ C is assigned a range r(u) ∈ R and a directed
edge (u, v) exists in the graph, if and only if the Euclidean distance between u
and v does not exceed r(u).

The number of nodes of a radio network is denoted by n, and the eccentricity
of the source (the maximum length of all shortest paths in the graph from the
source to all other nodes) is denoted by D. Throughout the paper, log denotes
the logarithm with base 2 and ln denotes the natural logarithm. Nodes of a
radio network have distinct labels from the set {1, . . . , N}, where N ∈ O(n).
Moreover, nodes of a geometric radio network have also their (x, y) coordinates.
A priori, each node of a (general) radio network knows only its own label, and
each node of a GRN knows only its own label and its (x, y) coordinates, as well
as the set R of available ranges (which has constant size). All other information
about the network must be given to nodes as advice, to be defined below.

Fast Radio Broadcasting with Advice 293

One of the most studied communication primitives in networks is broadcast-
ing, also known as one-to-all communication. The source has a message that
should be distributed to all other nodes in the network. The time of a determin-
istic broadcasting algorithm is the number of rounds in which all the nodes get
the source message. With every radio network G we associate its optimal broad-
casting time Opt(G). This is the minimum time in which broadcasting in this
network can be accomplished, if nodes have full information about the network.
Establishing optimal broadcasting time for a given radio network is an NP-hard
problem [5].

It remains to formalize the framework of advice (cf. [17]) in our present con-
text. All additional knowledge available to the nodes of the network (in particular
knowledge concerning the rest of the network), is modeled by an oracle providing
advice. An oracle is a function O whose arguments are labeled networks (in the
case of geometric radio networks these arguments are actual sets of points in the
plane, together with the assigned ranges and labels), and the value O(G), for a
network G = (V, E), called the advice provided by the oracle to this network,
is in turn a function f : V → {0, 1}∗ assigning a binary string to every node v
of the network. Intuitively, the oracle looks at the entire labeled network and
assigns to every node some information, encoded as a string of bits. The size of
the advice given by the oracle to a given network G is the sum of the lengths of
all the strings it assigns to nodes. Hence this size is a measure of the amount of
information about the network, available to its nodes. Solving the broadcasting
problem in radio networks using advice provided by oracle O consists in design-
ing an algorithm that is unaware of the network G at hand but accomplishes
broadcasting in it, as long as every node v of the network G is provided with
the string of bits (advice) f(v), where f = O(G).

The main interest of this framework is the significance of lower bounds on
the size of advice. If we have a broadcasting algorithm using some advice of size
O(g(n)) and achieving time O(T (n)), in n-node networks, and at the same time
we prove that Ω(g(n)) is the lower bound on the size of advice needed to achieve
time O(T (n)), this implies optimality in a very strong sense: smaller amount
of information of any type cannot help to achieve broadcasting time O(T (n))
using any algorithm. In other words, changing the type of information provided
to nodes cannot help to achieve the same efficiency of broadcasting at lower
information cost.

This paper is the first to consider communication in radio networks in the
framework of algorithms with advice. Our research is motivated by the following
problems:

– What is the minimum size of advice permitting to achieve broadcasting time
O(Opt(G)) for a radio network G?

– What are the trade-offs between the size of advice and the time of broad-
casting in radio networks?

Our Results
Our main focus is on radio networks with constant optimal broadcasting time,
i.e., on networks in which deterministic broadcast in constant time is possible

294 D. Ilcinkas, D.R. Kowalski, and A. Pelc

under complete knowledge of the network. For this class of networks we establish
the minimum size of advice sufficient to achieve constant broadcasting time. We
show that O(n) bits of advice are sufficient and o(n) bits are not sufficient, in
order to achieve constant broadcasting time in all these networks. The main
contribution of this part of the paper is the above tight lower bound on the size
of advice. This is in sharp contrast with geometric radio networks of constant
broadcasting time: we show that in these networks a constant number of bits of
advice suffices to broadcast in constant time.

For arbitrary radio networks we show a trade-off between the size of advice
and the time of deterministic broadcasting, by presenting a broadcasting algo-
rithm whose time is inverse-proportional to the size of advice. More precisely,
for any q ∈ O(n) we show an oracle which gives advice of size q to the nodes
of a network, and an algorithm using this advice, which performs broadcasting
in time O(nD

q log3 n) in any n-node network with source eccentricity D. As a
corollary we get that for “short” networks, i.e., with D polylogarithmic in n, an
advice of sublinear size suffices to achieve polylogarithmic broadcasting time.

Related Work
The paradigm of distributed computing with advice has been recently introduced
in [17] and used there to study the task of broadcasting with a linear number of
messages, in the message passing model. Subsequently, this approach has been
used in [18] to study efficient exploration of networks by mobile agents, in [19]
to study distributed graph coloring, in [20] to study the distributed minimum
spanning tree construction, and in [30] to study graph searching.

Broadcasting in radio networks is a topic extensively studied in the last twenty
years. Most of the papers represented radio networks as arbitrary (undirected
or directed) graphs. Models used in the literature about algorithmic aspects of
radio communication, starting from the paper [5], differ mostly in the amount
of information about the network that is assumed available to nodes. However,
assumptions about this knowledge concern particular items of information, such
as the knowledge of the size of the network, its diameter, maximum degree, or
some neighborhood around the nodes, rather than limiting the total number of
bits available to nodes, regardless of their meaning, as is the case with the advice
approach.

Deterministic centralized broadcasting assuming complete knowledge of the
network was considered, e.g., in [6], where a polynomial-time algorithm con-
structing a O(D log2 n)-time broadcasting scheme was given for all n-node net-
works of radius D. Subsequent improvements by many authors [15,21,22] were
followed by the polynomial-time algorithm from [27] constructing a O(D +
log2 n)-time broadcasting scheme, which is optimal. On the other hand, in [1]
the authors proved the existence of a family of n-node networks of radius 2, for
which any broadcast requires time Ω(log2 n).

One of the first papers to study deterministic distributed broadcasting in radio
networks whose nodes have only limited knowledge of the topology, was [2]. The
authors assumed that nodes know only their own label and labels of their neigh-
bors. Many authors [4,7,8,10] studied deterministic distributed broadcasting in

Fast Radio Broadcasting with Advice 295

radio networks under the assumption that nodes know only their own label (but
not labels of their neighbors). Increasingly faster broadcasting algorithms work-
ing on arbitrary radio networks were constructed, the currently fastest being the
O(n log2 D)-time algorithm from [11] and the O(n log n log log n) algorithm from
[12]. On the other hand, in [10] a lower bound Ω(n log D) on broadcasting time
was proved for n-node networks of radius D.

Randomized broadcasting algorithms in radio networks were studied, e.g.,
in [2,28,26]. For these algorithms, no topological knowledge of the network and
no distinct identities of nodes were supposed.

Broadcasting in geometric radio networks and some of their variations was
considered, e.g., in [13,14,29]. In [29] the authors proved that scheduling opti-
mal broadcasting is NP-hard even when restricted to such graphs, and gave an
O(n log n) algorithm to schedule an optimal broadcast when nodes are situated
on a line. In [14] broadcasting with restricted knowledge was considered but
the authors studied only the special case of nodes situated on the line. In [13],
the authors investigated the impact of the size of the part of the geometric
radio network known to nodes, on the efficiency of broadcasting. In particular
they showed that with the full knowledge of the network broadcasting can be
accomplished in (optimal) time O(D), and if all nodes know only their own
label, range and coordinates, broadcasting in time O(n) is possible. For sym-
metric geometric radio networks, time O(D + log n) was proved optimal under
this restricted knowledge, if collision detection is available. If it is not, the same
broadcasting time was achieved if nodes know positions, labels and ranges of
all nodes within a constant (arbitrarily small) positive radius. In a recent pa-
per [16] the authors considered broadcasting in radio networks represented by
unit disk graphs. They compared broadcasting time in two models: the model
allowing spontaneous transmissions of nodes that have not yet gotten the source
message, and the model in which only nodes that already obtained the source
message can transmit.

2 Broadcasting in Constant Time

In this section we focus on radio networks with constant optimal broadcast-
ing time, i.e., on the class of networks in which broadcasting in constant time
is possible if nodes have complete knowledge of the network. Such networks
must of course have bounded source eccentricity D. However, this is not a suffi-
cient condition. Indeed, there are n-node networks with D = 2, whose minimum
broadcasting time is Ω(log2 n), even if the network is completely known to all
nodes (cf. [1]).

Networks with constant optimal broadcasting time may require a very long
broadcasting time if their topology is unknown and in the absence of any advice.
In [25] a family of such n-node networks was proved to require time Ω(n). In
fact, even for the more restricted class of geometric radio networks, strong lower
bounds of this type can be proven. Using techniques from [16] a class of geometric
radio networks with constant optimal broadcasting time can be shown to require

296 D. Ilcinkas, D.R. Kowalski, and A. Pelc

time Ω(
√

n), if nodes know only their own label and coordinates. Therefore
it is natural to ask how sensitive to advice is broadcasting time in networks
(geometric or not) with constant optimal broadcasting time. More precisely, how
much advice is needed to achieve constant broadcasting time in such networks.

First observe that for networks of the considered class, O(n) bits of advice
are sufficient in order to achieve constant broadcasting time.

Proposition 1. For any positive constant c let C be the class of n-node radio
networks whose optimal broadcasting time is at most c. There exists an oracle
which gives advice of size O(n) to the nodes of networks of class C and an
algorithm using this advice, which performs broadcast in time at most c, for any
network in class C.

Proof. Fix a network C ∈ C and consider an algorithm having complete knowl-
edge of the network and broadcasting in time at most c. For any fixed node v
of C, let t1, . . . , tk be numbers of rounds in which v has to transmit, according
to this algorithm. The oracle gives this information, encoded as a string of bits
of bounded length, to node v. Hence the total size of advice is O(n). Now the
broadcasting algorithm simply makes node v transmit in rounds t1, . . . , tk. ��

2.1 Lower Bounds

The main result of this section shows that the above upper bound on the size of
advice needed to achieve constant broadcasting time is tight, i.e., that o(n) bits
of advice are not sufficient to broadcast in constant time.

Theorem 1. For every integer function k∗ ∈ o(n) there exist an integer func-
tion c∗ such that c∗(n) → ∞ and a family of n-node networks with constant
optimal broadcasting time, such that every algorithm using at most k∗(n) bits of
advice requires time c∗(n) on some of them, for sufficiently large n.

We will use the following lemmas whose proofs are omitted.

Lemma 1. If k∗ ∈ o(k) then for any integer 0 ≤ � ≤ k∗ and for sufficiently
large k (

k

k∗ − �

)
≤ e−2� ·

(
ke

k∗

)k∗

.

Lemma 2. Let x, x1, . . . , xa be non-negative integers satisfying x ≥ x1 ≥ . . . ≥
xa ≥ 0 and x1 + . . . + xa = 2x, where 2 ≤ a ≤ x. The number of permutations
of the set X = {1, . . . , 2x} satisfying the following condition:

for any 1 ≤ i ≤ a and 1 ≤ j ≤ x, no two elements from the interval
Xi = [1 +

∑i−1
i′=1 xi′ ,

∑i
i′=1 xi′] are placed in positions 2j − 1, 2j (called

group j)

is at most
β(2x, a) =

√
2 · (2x)! · e2a2 ln(2ex/a)−x/a .

Fast Radio Broadcasting with Advice 297

2

1

7

965432

8

1

7 8

1065432

9

0 0

H H
1

(a) (b)

Fig. 1. (a) Example of the network in the class used in the proof of Theorem 1, for
n = 11 and k = 3; (b) Example of the network in the class used in the proof of
Theorem 2, for n = 10, n′ = 3, k = 2, S1 = {2} ⊆ {1, 2, 3} and S2 = {4, 6} ⊆ {4, 5, 6}

Proof of Theorem 1. Fix n. Consider the following family C of n-node directed
networks, see Fig. 1(a). Let k =
(n − 1)/3�. (We omit parameter n from the
arguments of functions k, k∗, c∗ since it is known from the context.) Each network
in C is composed of three layers. Layer L0 consists of the source with label 0.
Layer L1 consists of 2k nodes with labels from {1, . . . , 2k}, partitioned into k
disjoint groups of size 2, and of n−(3k+1) nodes with labels from {3k+1, . . . , n}.
Layer L2 consists of k nodes with labels from {2k+1, . . . , 3k}. All nodes of layer
L1 are out-neighbors of the source, and each node 2k+i from layer L2 is the out-
neighbor of both nodes from the ith group. There are no other edges in networks
from C. There are α = (2k)!/2k different networks in this family. The optimal
broadcasting time of any network from C is clearly 2. Let c∗ = log k−k∗

2k∗ log(ke/k∗) .
Clearly, c∗ ∈ ω(1) for k∗ ∈ o(k). In view of k =
(n−1)/3�, it is enough to prove
that every algorithm using at most k∗ ∈ o(k) bits of advice requires time larger
than c∗ on some network in C. We fix n such that k is sufficiently large for the
purpose of Lemma 1 and Fact 1, and assume that k∗ ∈ o(k) and k∗ ∈ ω(k4/5)
(if we show that the time is ω(1) for functions k∗ ∈ ω(k4/5), the same remains
true also for all smaller functions k∗).

The proof is by contradiction. Fix an oracle giving advice of size at most k∗ to
networks from the family C, and an algorithm using this oracle and completing
the broadcast in all these networks in time at most c∗. Let C(�) be the subfamily
of C for which the oracle gives � bits of advice to the source, for 0 ≤ � ≤ k∗, and
gives the remaining bits to some other nodes of the network. For a sequence ŷ
of � bits, let C(�)ŷ be the subfamily of C(�) containing those networks for which
the oracle gives the advice ŷ to the source.

Fix 0 ≤ � ≤ k∗. There are 2� possible advice sequences in the source, and at
least k−k∗+ � groups none of whose nodes has any advice. We call these groups
blind groups. Fix a sequence ŷ of � bits of advice in the source and consider the
transmission sequence of length at most c∗ for each node in {1, . . . , 2k} assuming
that it has no bit of advice and that the source has the advice ŷ. Formally, the

298 D. Ilcinkas, D.R. Kowalski, and A. Pelc

transmission sequences can be longer, but it is sufficient to consider only prefixes
of length at most c∗ for the purpose of proving the lower bound. Under this
assumption, each node in L1 without any advice has a fixed 0-1 transmission
sequence of length c∗, since no feedback is possible, due to the absence of directed
cycles in the graph. (In a transmission sequence, 0 in position i means that the
node does not transmit in round i, and 1 means that it transmits.) This yields a
partition of nodes {1, . . . , 2k} into at most a = 2c∗

= k−k∗

2k∗ log(ke/k∗) colors, where
all nodes of the same color follow the same transmission pattern during the first
c∗ rounds. Note that a4 ∈ o(k∗), by the assumption k∗ ∈ ω(k4/5). In every
network in C(�)ŷ, nodes of every blind group must have different colors, because
otherwise both nodes would follow the same pattern of transmissions and their
out-neighbor would not receive the source message by round c∗. Therefore, the
number of networks in class C(�)ŷ is at most

(
k

k∗ − �

)(
2k

2(k∗ − �)

)
(2k∗ − 2�)!

2k∗−�
· 2−(k−k∗+�) · β(2k − 2k∗ + 2�, a) ,

where β(2x, a) is the upper bound from Lemma 2. In the above formula the
first factor corresponds to the number of choices of non-blind groups (and pos-
sibly some blind ones, since the number of non-blind groups is at most k∗ − �)
among all groups. The second factor corresponds to the number of choices of
the 2(k∗ − �) elements to be allocated to the above groups. The third factor
corresponds to the number of ways of allocating these elements to these groups.
The last two factors form an upper bound on the number of different configu-
rations of the remaining nodes such that the remaining (blind) groups are not
monochromatic (i.e., the number of permutations without remaining monochro-
matic blind groups, divided by the number of possible flips of elements inside
those groups—there are 2k−k∗+� such flips).

Using Lemma 2 and the properties k∗ ∈ ω(k4/5) and a4 ∈ o(k∗), we get the
following fact whose proof is omitted.

Fact 1. For sufficiently large k,

|C(�)ŷ | ≤
(

k

k∗ − �

)
· α · e−k∗ log(ke/k∗)−1 .

Finally, using Fact 1 and Lemma 1, we can bound

|C| =
k∗∑

�=0

∑
ŷ

|C(�)ŷ| ≤
k∗∑

�=0

∑
ŷ

(
α ·

(
k

k∗ − �

)
· e−k∗ log(ke/k∗)−1

)

≤
k∗∑

�=0

(
2� · α · e−2� · ek∗ ln(ke/k∗) · e−k∗ log(ke/k∗)−1

)

≤ (α/e) ·
k∗∑

�=0

e−� < α ,

Fast Radio Broadcasting with Advice 299

for sufficiently large k. This is a contradiction which completes the proof of
Theorem 1. ��
Our next result shows that if the advice is of sublogarithmic size then the time
required for broadcasting is not only unbounded but sometimes quite large.

Theorem 2. Fix any constant δ < 1. There exists a constant c > 0 such that,
for sufficiently large n, there exists a family of n-node networks with constant
optimal broadcasting time, for which every algorithm using at most c log n bits
of advice requires time at least nδ on some of them.

Proof. Fix any 0 < δ < 1. For a positive integer n, we set n′ = �nδ
 and
k =
 n−1

n′+1�. For n large enough, there exists 0 < ε < 1 such that k ≥ nε. For
any k-tuple S = (S1, S2, . . . , Sk), where each Si, 1 ≤ i ≤ k, is an arbitrary non-
empty subset of {1, . . . , n′}, we define the directed graph GS as follows. The
source is node 0. It has directed edges to k · n′ nodes labelled from 1 to k · n′.
For any 1 ≤ i ≤ k, if j ∈ Si then node (i − 1)n′ + j has a directed edge to node
k ·n′ + i. Finally, in order to have exactly n nodes, the source has directed edges
to the nodes from k(n′ + 1) + 1 to n − 1, if any. Hence the graph has k disjoint
(n′ + 1)-node subgraphs H1, . . . , Hk, attached to the source. More precisely, the
subgraph Hi is induced by the nodes (i−1)n′+1, . . . , i ·n′, k ·n′+ i. The directed
edges inside a subgraph Hi are determined by the set Si. The set of graphs GS ,
for all possible S, is denoted G. See Fig. 1(b).

We prove that there is no algorithm using advice of size q ≤ 1
2 log k that

achieves broadcast in the family G in time smaller than n′. Fix an algorithm using
advice of size q ≤ 1

2 log k. Let s1, . . . , sQ, for Q = 2q+1 − 1 be an enumeration of
all binary sequences of length at most q (including the empty sequence). First
note that Q ·(q+1) ≤ k, for sufficiently large n. Consider the following property:

For any 1 ≤ i ≤ Q · (q + 1), there exists a non-empty subset Si of
{1, . . . , n′} such that for any k-tuple S containing Si as the i-th element
we have that, in the graph GS , either

(1) the source has advice different from sj , where j =
 i−1
q+1�, or

(2) at least one node of the subgraph Hi receives at least one bit of
advice.

This implies that for a k-tuple S such that the Q · (q + 1) first elements are
the above mentioned sets Si, there exist at least q + 1 different subgraphs Hi

receiving at least one bit. Indeed, if the advice given to the source is sj , each of
the graphs Hi, for i = (j − 1)(q + 1) + 1, . . . , j(q + 1), gets at least one bit. This
contradicts the fact that the total size of advice is at most q.

Therefore, the property does not hold. This means that there exists an in-
teger i ≤ k such that for any non-empty subset Si of {1, . . . , n′}, there exists
a k-tuple S containing Si as the i-th element such that, in the graph GS , the
source has advice sj , where j =
 i−1

q+1�, and the subgraph Hi receives no bit of
advice. In other words, there exists an index i and a subfamily G′ of G such
that for each graph in G′ the source always receives the same string while the

300 D. Ilcinkas, D.R. Kowalski, and A. Pelc

subgraph Hi never receives any advice from the oracle; moreover, for any non-
empty subset Si of {1, . . . , n′}, there exists a graph in G′ where the graph Hi is
constructed from Si. Therefore, for this subgraph Hi, the situation is identical
as if it were alone (the graph is directed) and as if there were no oracle. Since
there are no directed cycles in the graph, no node can receive any feedback, and
hence any broadcasting algorithm in such a graph is oblivious. Therefore, using
the argument from the proof of Theorem 2.2. in [23], for some graph Hi the time
of informing node k · n′ + i is at least n′. This implies that there exists a graph
in G′ in which the algorithm does not achieve broadcast in time less than n′.
Since n′ ≥ nδ and 1

2 log k ≥ c log n, for c = ε/2, this proves the theorem. ��

2.2 Geometric Radio Networks

We finally show that the large advice requirements established in the previous
section do not hold in the more restricted class of geometric radio networks. In-
deed, for these networks we have the following result which should be contrasted
with Theorems 1 and 2.

Theorem 3. For any positive constant c let G be the class of geometric radio
networks whose optimal broadcasting time is at most c. There exists an oracle
which gives advice of constant size to the nodes of networks of class G and an
algorithm using this advice, which performs broadcast in constant time c′, for
any network in class G.

To prove Theorem 3 we will use the following construction. Fix the ranges r1 <
... < rρ. (Recall that both the number ρ of ranges and the ranges themselves are
constants.) Partition the plane into a mesh of squares of side z = r1/

√
2, called

tiles, with the bottom-left corner of one of them in (0, 0). Include the left and
bottom sides and exclude the top and right sides from every square. Knowing its
position, every node knows to which tile it belongs. The tile to which the source
belongs is called central. Observe that any two nodes belonging to the same tile
are within each other’s range. For any positive integer x, the x-block is a square
consisting of B(x) = (2x + 1)2 tiles with the central tile in the center of this
square.

A configuration of points in the plane yielding a geometric radio network
with optimal broadcasting time at most c must have the property that the most
distant points are at distance at most 2crρ and hence all points are contained in
a d-block, for some positive constant d. Take the smallest such integer d. Order
all the B(d) tiles of the d-block in a fixed way, giving them indices 1, . . . , B(d)
and then order the p(d) = B(d)(B(d) − 1) ordered pairs of these indices in a
fixed way, giving them indices 1, . . . , p(d). Let λ(a, b) denote the index of the
pair (a, b), where a, b are (indices of) distinct tiles.

Advice. We now describe the oracle, called Geometric Oracle in the sequel.
Consider an ordered pair (a, b) of distinct tiles of the d-block. If there is a pair
(u, v) of nodes in tiles a and b, respectively, such that v is in the range of u,
choose one such a pair. The oracle gives advice (λ(a, b), out) to u and advice

Fast Radio Broadcasting with Advice 301

(λ(a, b), in) to v. Clearly, the same node can get many pieces of advice, however,
for constant d, the total number of bits of advice is constant. Moreover, any node
that received the above advice, gets additionally the integer d.

We now describe the algorithm using the advice obtained from Geometric
Oracle. It uses global round numbers which are transmitted from node to node
appended to the source message.

Algorithm GRN-Broadcasting-with-Advice. The algorithm lasts 1 + 2p(d)B(d)
rounds. After round 1 it is divided into B(d) identical stages, each lasting p(d)
2-round periods. The pseudo-code follows:

in round 1 the source transmits;
starting in round 2, repeat B(d) times procedure Stage

where Stage is the following subroutine:

if u has advice (i, out), for 1 ≤ i ≤ p(d), and got the source message
then it transmits in the first round of period i of this stage

if v has advice (i, in), for 1 ≤ i ≤ p(d), and got the source message
then it transmits in the second round of period i of this stage

Theorem 3 follows from the following lemma whose proof is omitted.

Lemma 3. Algorithm GRN-Broadcasting-with-Advice, using the Geometric Or-
acle, is correct and has constant running time.

3 The General Algorithm

In this section we design and analyze a broadcasting algorithm working for ar-
bitrary radio networks, whose running time is inverse-proportional to the size of
advice given to nodes. We prove the following theorem.

Theorem 4. For any q ∈ O(n) there exists an oracle which gives advice of size q
to the nodes of a network and an algorithm using this advice, which performs
broadcast in time O(nD

q log3 n) in any n-node network with source eccentricity D.

We prove Theorem 4 by constructing an appropriate oracle and algorithm. First
assume that q ∈ O(D log n + log2 n). In this case we can use the broadcasting
algorithm from [11] running in time O(n log2 D) without using any advice, since
O(n log2 D) ⊆ O(nD

q log3 n), for this range of q. Therefore, in the sequel, we can
assume q ≥ 6(D log n + log2 n).

Given the directed graph G = (V, E) with source s, let L1, . . . , LD be BFS
layers in G, i.e., sets of nodes at distance exactly i from the source, for 1 ≤ i ≤ D.
Let T be the smallest power of 2 greater or equal to 1152n

q log2 n. For each
1 ≤ i ≤ D−1 we will need sets Li(j) ⊆ Li, for j = log T, log T +1, . . . ,
log |Li|�,
such that for every such j the following properties hold:

302 D. Ilcinkas, D.R. Kowalski, and A. Pelc

(i) every node in Li+1 having at least 2j and less than 2j+1 neighbors in Li, has
at least 1 and at most 144 logn neighbors in Li(j);

(ii) |Li(j)| < 144|Li| log n/2j.

The following lemma justifies the existence of such sets (the proof is omitted).

Lemma 4. There exist sets Li(j) ⊆ Li, for j = log T, logT + 1, . . . ,
log |Li|�
with the above properties.

Advice. We now describe the advice given by the oracle. The advice given to the
source consists of integers N, n, q and of the sizes of layers L1, . . . , LD. This can
be encoded using 3D log n ≤ q/2 bits of advice. Moreover, to every node in set
Li(j), for 1 ≤ i ≤ D − 1 and log T ≤ j ≤ log |Li|, the oracle gives the integer j.
(Note that, since sets Li(j) are not necessarily disjoint, a node may get several
integers as advice.) This costs a total of at most

2 ·
D−1∑
i=1

�log |Li|�∑
j=log T

(144|Li| log n/2j · log j) ≤ 4 · 144 · (n/T) log2 n ≤ q/2

bits, by property (ii) of sets Li(j). Hence the total size of advice is at most q.

Algorithm Radio-Broadcasting-with-Advice. We now describe the algorithm us-
ing the above advice. It uses global round numbers which are transmitted from
node to node appended to the source message. First we define the additional
information attached to the source message. We will use the notion of a (N, x)-
selective family. This is a family F of subsets of {1, ..., N}, such that, for any set
X ⊆ {1, ..., N} of size at most x, there exists a set F ∈ F , for which |F ∩X | = 1.
For any x, fix a (N, x)-selective family S(N, x) of size s(N, x). By [10] there exist
(N, x)-selective families of size O(x log(N/x)) ⊆ O(x log n), thus we can assume
that s(N, x) ≤ b · x log n for some constant b > 0. Fix an order (F1, . . . , Fs(N,x))
of the family S(N, x). Knowing T , sizes |Li| of layers and the constant b, the
source computes the sequence of rounds t1 < . . . < tD−1 recursively as follows:

t0 = 0, ti+1 = ti + s(N, T) + (log |Li| − log T + 1) · s(N, �144 logn
), for
1 ≤ i ≤ D − 1.

Then the source broadcasts the source message together with the sequence
t1, . . . , tD−1 and |L1|, . . . , |LD−1| in round 0. A node that receives this message
for the first time in round t, where ti−1 < t ≤ ti for some 1 ≤ i ≤ D − 1, waits
till round ti and starts transmitting according to the (N, T)-selective family
S(N, T), starting in round ti +1 until round ti + s(N, T). More precisely, a node
with label u transmits in round ti + y, if u is in Fy , where Fy is the y-th set of
the family S(N, T). Additionally, if a node has the integer j in its advice string
then it transmits according to the family S(N, �144 logn
) in the time interval
from ti + s(N, T) + (j − log T) · s(N, �144 logn
) + 1 to ti + s(N, T) + (j + 1 −
log T) · s(N, �144 logn
), for any log T ≤ j ≤ log |Li+1|. A node without the
integer j in its advice string waits during this period. A node that receives the
source message for the first time in round at most ti does not transmit in rounds
beyond ti+1. We omit the proof of the following lemma.

Fast Radio Broadcasting with Advice 303

Lemma 5. Assume q ∈ O(n) and q ≥ 6(D log n + log2 n). Our algorithm
Radio-Broadcasting-with-Advice performs broadcasting in any n-node network
with source eccentricity D in time O(nD

q log3 n) using at most q bits of advice.

Since, as we noticed before, for q ∈ O(D log n + log2 n), the time O(nD
q log3 n)

of broadcasting can be achieved even without advice, Lemma 5 concludes the
proof of Theorem 4.

Corollary 1. For n-node networks with source eccentricity D polylogarithmic
in n, there exists advice of size o(n) sufficient to achieve polylog(n) broadcasting
time.

The above corollary should be contrasted with the lower bound from [10], were
it is shown that (without advice) some n-node networks with source eccentricity
D require time Ω(n log D).

4 Conclusion

We studied the impact of the size of information (advice) given to nodes of
a radio network on the time of broadcasting. Our approach was quantitative,
i.e., we were concerned with the total number of bits, as opposed to particular
items of information, such as the knowledge of neighborhood, or of the size of
the network, whose impact on broadcasting time was previously studied in the
literature. While our algorithm is a first step towards grasping the trade-off
between the size of advice and the time of broadcasting, establishing the exact
trade-offs, for any number of bits of advice, remains an open problem. Its general
formulation is: What is the minimum time to broadcast in radio networks, with
advice of size q? A more specific question is: What is the minimum size of advice
permitting to achieve broadcasting time O(Opt(G)) for any radio network G.
We answered this question for networks with constant optimal time.

Establishing trade-offs between the size of advice and broadcasting time is
also open for geometric radio networks. For these networks time O(D), where D
is the eccentricity of the source, is optimal under full knowledge of the network.
It is easy to show that O(min(n, D2)) bits of advice are sufficient to achieve this
time. Is this size of advice also necessary?

Another interesting problem is to compare the size of arbitrary advice per-
mitting given broadcasting time with the size of advice of given type, e.g., con-
cerning the immediate neighborhood. It was proved in [24] that giving to all
nodes information about their immediate neighborhood (a total of Θ(|E| log n)
bits) permits broadcasting in time O(n2/3 log n) in networks with source eccen-
tricity 2. In [3] it was proved that time Ω(

√
n) is necessary for these networks

with this information. This should be contrasted with the algorithm from the
present paper which, e.g., permits broadcasting in these networks in the same
time O(n2/3 log n) using only O(n1/3 polylog(n)) bits of advice, provided that
the advice is of non-restricted type. On the other hand, O(

√
n polylog(n)) bits

of advice suffice to beat time Θ(
√

n) for these networks. These examples suggest

304 D. Ilcinkas, D.R. Kowalski, and A. Pelc

that using advice of non-restricted type may be much more efficient than that
of a particular type.

The paradigm of radio broadcasting with advice also suggests related prob-
lems for randomized algorithms: What is the minimum number of random bits
provided to the nodes of a radio network of unknown topology that is sufficient
to achieve randomized broadcasting in optimal expected time? The lower bound
on the expected broadcasting time obtained by Kushilevitz and Mansour [28]
can be directly applied to the class of graphs G defined as follows: G consists
of three layers, the only directed connections are from a layer to the subsequent
layer, the first layer consists of the source, and each node in the middle layer
has at most one out-neighbor in the last layer. In view of the result from [28],
the number of random bits provided to the system must be Ω(n log n) in order
to guarantee O(log n) expected time. By contrast, O(n) bits of advice suffice
to achieve constant deterministic broadcast time for these networks. This means
that randomization is sometimes more costly than advice by a logarithmic factor,
in terms of the number of bits. The precise trade-off between randomized broad-
casting time and the number of random bits used by a distributed randomized
broadcasting algorithm remains open.

References

1. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast.
Journal of Computer and System Sciences 43, 290–298 (1991)

2. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time complexity of broadcast in
radio networks: an exponential gap between determinism and randomization. Jour-
nal of Computer and System Sciences 45, 104–126 (1992)

3. Brito, C., Gafni, E., Vaya, S.: An information theoretic lower bound for broad-
casting in radio networks. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS,
vol. 2996, pp. 534–546. Springer, Heidelberg (2004)

4. Bruschi, D., Del Pinto, M.: Lower bounds for the broadcast problem in mobile
radio networks. Distributed Computing 10, 129–135 (1997)

5. Chlamtac, I., Kutten, S.: On broadcasting in radio networks - problem analysis
and protocol design. IEEE Transactions on Communications 33, 1240–1246 (1985)

6. Chlamtac, I., Weinstein, O.: The wave expansion approach to broadcasting in mul-
tihop radio networks. IEEE Transactions on Communications 39, 426–433 (1991)

7. Chlebus, B., Ga̧sieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deterministic broad-
casting in unknown radio networks. Distributed Computing 15, 27–38 (2002)

8. Chlebus, B., Ga̧sieniec, L., Östlin, A., Robson, J.M.: Deterministic radio broad-
casting. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS,
vol. 1853, pp. 717–728. Springer, Heidelberg (2000)

9. Chrobak, M., Ga̧sieniec, L., Kowalski, D.: The wake-up problem in multi-hop radio
networks. In: Proc. 15th ACM-SIAM Symposium on Discrete Algorithms (SODA
2004), pp. 985–993 (2004)

10. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes,
and broadcasting on unknown radio networks. In: Proc. 12th Ann. ACM-SIAM
Symposium on Discrete Algorithms (SODA 2001), pp. 709–718 (2001)

11. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown
topology. In: Proc. 44th Symposium on Foundations of Computer Science (FOCS
2003), pp. 492–501 (2003)

Fast Radio Broadcasting with Advice 305

12. De Marco, G.: Distributed broadcast in unknown radio networks. In: Proc. 19th
ACM-SIAM Symp. on Discrete Algorithms (SODA 2008) (2008)

13. Dessmark, A., Pelc, A.: Broadcasting in geometric radio networks. Journal of Dis-
crete Algorithms 5, 187–201 (2007)

14. Diks, K., Kranakis, E., Krizanc, D., Pelc, A.: The impact of knowledge on broad-
casting time in linear radio networks. Theoretical Computer Science 287, 449–471
(2002)

15. Elkin, M., Kortsarz, G.: Improved broadcast schedule for radio networks. In: Proc.
16th ACM-SIAM Symposium on Discrete Algorithms(SODA 2005) (2005)

16. Emek, Y., Gasieniec, L., Kantor, E., Pelc, A., Peleg, D., Su, C.: Broadcasting
time in UDG radio networks with unknown topology. In: Proc. 26th Ann. ACM
Symposium on Principles of Distributed Computing (PODC 2007), pp. 195–204
(2007)

17. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: a new measure of difficulty for
communication problems. In: Proc. 25th Ann. ACM Symposium on Principles of
Distributed Computing (PODC 2006), pp. 179–187 (2006)

18. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Tree exploration with an oracle. In: Královič,
R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 24–37. Springer, Heidel-
berg (2006)

19. Fraigniaud, P., Ilcinkas, D., Gavoille, C., Pelc, A.: Distributed computing with ad-
vice: Information sensitivity of graph coloring. In: Arge, L., Cachin, C., Jurdziński,
T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 231–242. Springer, Hei-
delberg (2007)

20. Fraigniaud, P., Korman, A., Lebhar, E.: Local MST computation with short ad-
vice. In: Proc. 19th Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA 2007), pp. 154–160 (2007)

21. Gaber, I., Mansour, Y.: Centralized broadcast in multihop radio networks. Journal
of Algorithms 46, 1–20 (2003)

22. Ga̧sieniec, L., Peleg, D., Xin, Q.: Faster communication in known topology radio
networks. In: Proc. 24th Annual ACM Symposium on Principles Of Distributed
Computing (PODC 2005), pp. 129–137 (2005)

23. Ga̧sieniec, L., Pelc, A., Peleg, D.: The wakeup problem in synchronous broadcast
systems. SIAM Journal on Discrete Mathematics 14, 207–222 (2001)

24. Kowalski, D., Pelc, A.: Time of deterministic broadcasting in radio networks with
local knowledge. SIAM Journal on Computing 33, 870–891 (2004)

25. Kowalski, D., Pelc, A.: Time complexity of radio broadcasting: adaptiveness
vs. obliviousness and randomization vs. determinism. Theoretical Computer Sci-
ence 333, 355–371 (2005)

26. Kowalski, D., Pelc, A.: Broadcasting in undirected ad hoc radio networks. Dis-
tributed Computing 18, 43–57 (2005)

27. Kowalski, D., Pelc, A.: Optimal deterministic broadcasting in known topology radio
networks. Distributed Computing 19, 185–195 (2007)

28. Kushilevitz, E., Mansour, Y.: An Ω(D log(N/D)) lower bound for broadcast in
radio networks. SIAM Journal on Computing 27, 702–712 (1998)

29. Sen, A., Huson, M.L.: A new model for scheduling packet radio networks. In: Proc.
15th Annual Joint Conference of the IEEE Computer and Communication Societies
(IEEE INFOCOM 1996), pp. 1116–1124 (1996)

30. Soguet, D., Nisse, N.: Graph searching with advice. In: Prencipe, G., Zaks, S. (eds.)
SIROCCO 2007. LNCS, vol. 4474, pp. 51–65. Springer, Heidelberg (2007)

Author Index

Adjiashvili, David 141
Avni, Hillel 131

Beaumont, Olivier 61
Becker, Florent 48
Bermond, Jean-Claude 262
Bilò, Davide 89
Bonichon, Nicolas 61

Chaintreau, Augustin 74
Chernoy, Viacheslav 221
Cooper, Colin 20

Duchon, Philippe 61

Erlebach, Thomas 89

Feldmann, Andreas Emil 209
Flocchini, Paola 33
Fraigniaud, Pierre 104

Galč́ık, Frantǐsek 277
Gargano, Luisa 262

Ilcinkas, David 33, 291
Inuzuka, Nobuhiro 5
Izumi, Taisuke 5

Katayama, Yoshiaki 5
Kesselman, Alex 170
Klasing, Ralf 20
Kogan, Kirill 170
Kollias, Konstantinos 197
Kostka, Jan 185
Kowalski, Dariusz R. 291

Lahiri, Bibudh 119
Larchevêque, Hubert 61

Lebhar, Emmanuelle 104
Lotker, Zvi 104

Masuzawa, Toshimitsu 247
Mihalák, Matúš 89

Oswald, Yvonne Anne 185

Patt-Shamir, Boaz 2
Pelc, Andrzej 33, 291
Peleg, David 141

Radzik, Tomasz 20
Rajsbaum, Sergio 48
Rapaport, Ivan 48
Rémila, Éric 48
Rescigno, Adele A. 262
Röglin, Heiko 209

Santoro, Nicola 1, 33
Sauerwald, Thomas 234
Segal, Michael 170
Shalom, Mordechai 221
Shavit, Nir 131
Steinová, Monika 156
Sudholt, Dirk 234

Tirthapura, Srikanta 119
Tixeuil, Sébastien 247
Tomida, Yuichi 5

Vöcking, Berthold 209

Wada, Koichi 5
Wattenhofer, Roger 185
Widmayer, Peter 89

Zaks, Shmuel 221

	Title Page
	Preface
	Organization
	Table of Contents
	Mobile Entities Computing:Models and Problems
	Reputation, Trust and Recommendation Systems in Peer-to-Peer Systems
	Gathering Problem of Two Asynchronous Mobile Robots with Semi-dynamic Compasses
	Introduction
	Models of the System
	CORDA --- A Model of Robots
	Compasses

	Configurations, Executions and the Gathering Problem
	A Gathering Algorithm A,
	Relative Configurations and Relative Configuration Map
	Regions in RC-Map for A,/3
	Correctness of A, for -Relative FXC with </3
	Correctness of A,/3 for -Absolute SDC with </3

	Locating and Repairing Faults in a Network with Mobile Agents
	Introduction
	Preliminaries
	Exploration Algorithm
	Lower Bound
	Conclusions

	Remembering without Memory: Tree Exploration by Asynchronous Oblivious Robots
	Introduction
	Terminology and Preliminaries
	Exploration of Trees
	Exploration of Arbitrary Trees
	Exploration of Trees of Maximum Degree 3: Upper Bound
	Exploration of Trees of Maximum Degree 3: Lower Bound

	Concluding Remarks and Open Problems

	Average Binary Long-Lived Consensus: Quantifying the Stabilizing Role Played by Memory
	Introduction
	Instability
	Average Instability of Memoryless Systems
	Geodesic Worst Case vs. Average Instability
	Optimal Memoryless Systems
	Symmetric Memoryless Systems: The Ehrenfest Urn Model

	Average Instability of Systems with Memory
	The Stabilizing Role Played by Memory
	Upper Bounds
	Lower Bounds

	Distributed Approximation Algorithm for Resource Clustering
	Introduction
	Distance Constrained Bin Covering: Greedy Approximation
	Bin Covering Subject to Distance Constraints
	Approximation Ratio of 13

	Preliminaries: Overlay and Prefix Sums Computation
	The Skip-Graph Overlay
	Prefix Sums Computation

	A Distributed Approximation Algorithm
	Clustering Algorithm without Distance Constraints
	Adding the Distance Restriction

	Conclusions

	Sharpness: A Tight Condition for Scalability
	Introduction
	Pattern Grid
	Definition
	Examples
	Evolution Equation of a Pattern Grid

	Sharpness
	Definitions
	Why Is a Sharp Vector Useful ?
	Why Is a Sharp Vector Necessary ?

	Scalability
	The Sharp Case
	The Non-sharp Case

	Concluding Remarks

	Discovery of Network Properties with All-Shortest-Paths Queries
	The Problem and the Model
	Discovering the Properties
	Discovering the Diameter
	Discovering a Minimal Dominating Set
	Discovering a Maximal Independent Set
	Discovering a Bridge or an Articulation Node of G
	Discovering the Min/Max Degree of G

	Conclusions

	Recovering the Long-Range Links in Augmented Graphs
	Introduction
	The Reconstruction Problem
	Methodology
	Our Results

	Extracting the Long-Range Links
	Navigability
	Impossibility Results
	Conclusion

	Computing Frequent Elements Using Gossip
	Introduction
	Related Work
	Organization of the Paper

	Model
	Frequent Elements with an Absolute Threshold
	Analysis

	Frequent Elements with Relative Threshold
	Analysis

	Maintaining Consistent Transactional States without a Global Clock
	Introduction
	TLC in a Nutshell

	An STM Using TLC
	Proof of the TL2C Algorithm
	Empirical Performance Evaluation
	Conclusion

	Equal-Area Locus-Based Convex Polygon Decomposition
	Introduction
	Preliminaries
	Basic Definitions
	Dividing Lines
	Vertical Scans and Hull Scans
	The Function 'Excess' and Semi-dividing Lines

	A Solution for Compact Configurations
	Solution Strategy
	Polar Scans
	Case Analysis

	The Overall Algorithm

	On the Power of Local Orientations
	Introduction
	Our Results
	Related Work
	Outline of the Paper

	Notation and Preliminaries
	Algorithm MergeCycles
	Rules Merge3 and EatSmall

	Algorithm MergeCycles+ Using Constant Memory
	Memory Needed by Our Algorithm
	Basic Instructions
	Changing the Rule Merge3 to Merge3+
	Changing the Rule EatSmall to EatSmall+
	Summary

	Conclusions, Open Problems, and Further Research

	Best Effort and Priority Queuing Policies for Buffered Crossbar Switches
	Introduction
	Our Results
	Related Work
	Paper Organization

	Model Description
	Unit Value Packets
	Variable Value Packets
	Conclusions

	Word of Mouth: Rumor Dissemination in Social Networks
	Introduction
	Related Work
	Model and Notation
	Propagation Models
	Strategic Rumor Game

	Analysis
	Complexity of the Centroid Problem
	Complexity of the Medianoid Problem
	Advantage of the First Player
	Heuristics for Centroid

	Conclusion

	Non-preemptive Coordination Mechanisms for Identical Machine Scheduling Games
	Introduction
	Related Work
	Our Contributions

	The Model
	Non-preemptive Coordination Mechanisms

	The Price of Anarchy of Non-preemptive Coordination Mechanisms
	Conclusion and Open Problems

	Computing Approximate Nash Equilibria in Network Congestion Games
	Introduction
	Models and Method
	Our Results

	Preliminaries
	A Sufficient Condition on the Delay Functions
	Analysis of Classes of Delay Functions
	Polynomial Delay Functions
	Exponential Delay Functions
	Delay Functions from Queuing Theory

	Combined Delay Functions
	Conclusions

	On the Performance of Beauquier and Debas’ Self-stabilizing Algorithm for Mutual Exclusion
	Introduction
	Our Contribution
	Algorithm BD
	Lower Bound
	Properties of Algorithm BD
	Upper Bound Using a Potential Function
	Upper Bound Using Amortized Analysis
	Conclusion and Remarks

	Self-stabilizing Cuts in Synchronous Networks
	Introduction
	Motivation
	Related Work
	Our Results

	Definitions
	A General Upper Bound
	Dense Graphs
	Ring Graphs, Torus Graphs, and Hypercubes
	Ring Graphs
	Torus Graphs
	Hypercubes

	Conclusions and Future Work

	Quiescence of Self-stabilizing Gossiping among Mobile Agents in Graphs
	Introduction
	Preliminaries
	Self-stabilizing k-Gossiping among Distinct Agents
	Self-stabilizing k-Gossip among Anonymous Agents
	Conclusion

	Gathering with Minimum Delay in Tree Sensor Networks
	Introduction
	Network Model
	Related Work
	Paper Overview

	Mathematical Formulation
	Lines
	Trees
	The Algorithm
	Preliminary Results
	A Lower Bound
	Optimality

	Conclusion

	Centralized Communication in Radio Networks with Strong Interference
	Introduction
	Centralized Broadcasting
	Difficulty of Fast Broadcasting in IRG

	Interference Ad-Hoc Selective Families
	Centralized Broadcasting and Interference Ad-Hoc Selective Families
	Time Complexity of the Centralized Broadcasting in IRG with Respect to the Maximum Degree
	Conclusion
	Appendix

	Fast Radio Broadcasting with Advice
	Introduction
	Broadcasting in Constant Time
	Lower Bounds
	Geometric Radio Networks

	The General Algorithm
	Conclusion

	Author Index

